
 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-1

SnIP Quick Start Guide

M5/500 Ethernet Option Interface

1.0 Optional SnIP Ethernet Interface Overview
This Quick Start Guide, or QSG is intended for technical personnel who are familiar with networks
and routing plus the Linux Operating System. It is intended to familiarize someone already up to
speed on these subjects with the unique features and operating mechanisms of the SnIP.

The optional Satellite network Interface Processor or “SnIP” Ethernet Interface is an all new
processor based Ethernet and TCP/IP interface for the PSM-4900 and PSM-500 series of
satellite modems. The interface is contained on a small, low power (approx 1 Watt) printed circuit
card that installs within the modem chassis. The main rear panel data interface is an Ethernet
10/100 Base-T, RJ45 type. The SnIP to modem interface is also an internal synchronous serial
data port and modem control port that connect directly to the modem.

The main purpose of the SnIP is to convert Ethernet TCP/IP traffic to a form suitable for satellite
transmission, specifically over Datum Systems’ satellite modems. When two companion SnIP
units are on each end of a satellite link, it becomes a smart cable.

The processor runs a customized version of the open source Linux Operating System with
sophisticated bridging, routing and statistical functions. This operating system is also capable of
loading and running numerous other IP related open source and proprietary third party
applications. The implications of running Linux are wide ranging including both good and bad
features. You could think of the SnIP as a normal computer running Linux, minus the video
display, but with an added high speed synchronous serial port.

Linux uses names for the interface ports used to carry traffic. The RJ45 Ethernet connection is
named “eth0”, while the internal high speed synchronous serial port connected to the modem is
named “hdlc0”. It is named hdlc0 because the basic packet type used is HDLC. Some other
routers may name this port “serial1” or “wan0” (Cisco style “serial 1” or “Serial 0/0”).

This guide does not intend to explain the operation and features of Linux itself, nor extensive
details on how to set up and operate routers as those are subjects already occupying many
volumes of material, which is constantly changing and evolving. Instead it covers basic operation
of the standard software built in, and how it relates to the operation in conjunction with a satellite
modem. Basic network topologies and SnIP modes are discussed in Section 3 of this guide.

As of this writing in February 2009 the SnIP is still evolving, and not all of the final intended
features are fully implemented.

Since this is a Quick Start Guide, we will begin immediately with abbreviated information on how
to set up the SnIP for each of 3 standard functions, Bridge, Router and Monitor & Control only
interface plus a few other common procedures. Further explanations of the interfaces, Operating
System and procedures follow these brief descriptions.

Important! Any satellite link presents unique problems for TCP/IP traffic because of
the 500 mS round trip delay caused by the physical distance of the satellite above
the earth. Without some form of PEP or “packet acceleration” the TCP/IP data rate
is limited to between 128 kbps and 1 Mbps! UDP packets are not rate limited.

We are currently testing full functionality with XipLink acceleration appliances.

DATUM
SYSTEMS

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-2

1.0.1 Common Setup To Configure the SnIP
Before you can configure a SnIP or any network device there are several pieces of information
you need to know:

1. The IP Address range of the LAN or network(s) you will be connecting the SnIP into. For
a link you need this for both ends of the link. From this you should then select the SnIP’s
desired IP Address and Netmask.

2. The connected LAN may already have an Internet “Gateway” address, which is the
address that it goes to for external “Internet or Web” access. The SnIP may be the
Gateway at some sites. You need to know the web Gateway address if used.

3. Your Internet Service Provider or ISP should have also given you the names and IP
Addresses of two or more DNS Servers (Dynamic Name Servers). You need these
numbers. Otherwise you may optionally use the addresses of some public DNS servers.
More information and a web link is provided in Section 8.2.5 of this document and in the
SnIP itself along with some common addresses. Having different DNS server addresses
in the SnIP and the local LAN may slow down some operations.

4. You have to know what configuration you want to set the SnIP link to, that is, Bridge,
Router or controller only. Network Topology is discussed in Section 3.1.

5. You have to know the WAN and LAN addresses on the other end of the satellite link.

It also helps to have a diagram, even a crude one, of the network and its connections, showing
relevant items like the local LAN connections, major devices, gateways, and addresses,
preferably at both ends of the link.

In all three standard configuration modes described below you must start by connecting the SnIP
“Console” DB9 connector to a PC running a terminal emulation program (like Hyperterminal on a
Windows machine) set to a format of 38400, N, 8, 1 and VT100 emulation. This connection is via
a standard DB9 male to female cable, which is supplied with all SnIP equipped modems. This
control computer will be called the PC in the following descriptions.

1. Connect the SnIP Ethernet RJ45 connector to your local network (LAN) or into your
operating system via a standard Ethernet RJ45 cable. The SnIP can automatically
negotiate its rate and other parameters via AutoMDX.

2. Determine your desired mode of operation – that is, will it be a Bridge, Router or just for
Monitor and Control. In all cases you will need to have an IP Address selected for the
SnIP capable of operating within your existing LAN or operating network.

3. Start the PC and the terminal emulation program and insure the serial parameters are set
to 38400, N, 8, 1 and VT100 emulation. No hardware flow control is used.

4. Turn on the modem equipped with the SnIP - the terminal output from the SnIP will begin
immediately displaying lines of information as first the bootloader and then Linux itself
loads. When completed a login prompt will be displayed. If you connect after the
modem/SnIP is already running then hit “Enter” to bring up the login prompt.

5. Enter the login as “root”. When asked for the password enter “datum”. If the default
password has been changed then you need to know the new one.

6. In most cases a basic configuration will have been set at the factory during test, but if the
“configwiz” program starts automatically you should be ready to enter information initially,
at least a name for the SnIP and the IP address. The remainder will be set below for each
configuration. SnIP names could be anything descriptive like “snip3”, or “Sat-Router”, or
“Honolulu”. A location name might help identify it later. In the factory we normally preset
the name to “snip-xxxx”, where xxxx is the last four digits of the serial number.

7. You should also determine and have ready the Gateway address. A “Gateway” is the IP
Address a computer, or the SnIP uses to gain access outside the existing LAN address
range. For example in a simple home network the Gateway is the address for access to
the internet if connected. In most cases you will need to know the Gateway address to
program into the SnIP. You can usually get this address from any PC on the LAN.

8. The default “yes” for the Modem Polling option should be left this way unless you are
operating as a Monitor Control only with no internal connection. The polling send regular
messages to the modem internally as a keep-alive. It is not polling external modems.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-3

The SnIP has default factory values for most of the necessary parameters and probably will not
function on your LAN initially. It’s default IP Address is 192.168.1.xxx and the default Gateway
address is set to 192.168.1.1. Note also that Linux, and therefore the SnIP, are case sensitive
for all command entries, so care should be taken in entry. Linux can also be very frustrating
initially for Windows GUI users who are not familiar with command line operation.

You can view the current configuration settings by typing “config” at either the console or a telnet
virtual console session. You also have all of the normal Linux command line utilities to provide
configuration and operating information plus control.

About IP Addresses shown in this document - There is nothing special or magical about any
of the IP Addresses used here. By convention and keeping with the recommendations of the
IANA the addresses used are in the ranges 10.0.0.0 ~ 10.255.255.255 and 172.16.0.0 ~
172.31.255.255 for most of the Network and LANs shown, and 192.168.55.0 ~ 192.168.55.255
for the WAN addresses on the satellite side since this would be considered a private network.
You can change these in any way that suites your requirements. For example use 192.168.10.x
for the WAN. Local LANs may also be shown in the 192.168.a.b range as this is common behind
Gateways such as home cable or DSL modems.

Now, go to the appropriate SnIP function configuration type below for the remaining base setup.
Remember that unlike any bridge or router applications you may see on the web or in
documentation, this setup contains a satellite link and has two bridges or two routers as part of
the overall connection. Both ends of the link must be set up for the whole link to operate.

1.0.2 How To Configure the SnIP as a Bridge Device
A “bridge” is a standard network device designed to connect two LAN segments with the same
IP address range. It is an OSI Model Layer 2 device that only operates on Ethernet MAC
Addresses. The SnIP’s IP Address is part of Layer 3 and is used for functions other than bridging,
for example tftp, telnet/ssh control and the built in web server.

1. Start the configuration wizard by executing the command at the command line
 “configwiz” Note: Option selection below is not case sensitive

2. Select the “L” option for the LAN IP Address, and set your IP address.
3. Select the “N” option for Network Mask and set the Network Mask. The default of

255.255.255.0 can be selected by pressing return.
4. Select the “G” option if you wish the bridge to have a default Gateway IP address, and

set it to the proper value. Normally in a bridge this is the same on both ends of the link.
5. Select the “M” LinkMode option, then enter “b” or “B” to select the bridge mode option.

This sets the variables Bridge=yes and Router=no.
6. Select “S” for Save and enter to quit the configwiz program.

You will need to reboot the SnIP. Type “reboot” and hit enter. If you are only switching from
Router to Bridge mode you will not have to reboot.

In network terms the bridge device br0 “enslaves” the two normally included eth0 and hdlc0
interfaces. The “iptables” and “ebtables” network programs are available to bridge operation.

Important! Bridge devices work by looking at responses to packets sent out.
Therefore they WILL NOT WORK on one way links!

Note 1: See Section 11 for a current bug related to the bridging mode when the
Ethernet connection is removed and replaced.

Note 2: When in bridge mode you should not set the modem into IF Loopback.
Since the bridge learning may create a feedback mechanism that causes a data
storm. Normal filtering typically prevents this however.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-4

Note 3: The Linux Bridge application can only handle the Ethernet packet protocol.
It is possible to use the tools provided to switch to a Cisco or other protocol, but
the Bridge is incapable of using these.

1.0.3 How To Configure the SnIP as a Router Device
A “router” is a standard network device designed to connect two Internet segments with different
address ranges. It is an OSI Model Layer 3 device that operates on TCP/IP Addresses. The SnIP
Ethernet port’s IP Address is part of layer 3 and it must be within the locally connected LAN’s
address mask. It is also used for functions other than routing, for example tftp, telnet/ssh control
and the built in web server. This simple procedure below can set up a point to point router link.
For point to multipoint systems see the more detailed descriptions later in this document.

1. Start the configuration wizard by executing the command at the command line
 “configwiz” option selection below is not case sensitive

2. Select the “L” option for the LAN IP Address, and set your IP address.
3. Select the “N” option for Network Mask and set the Network Mask. The default of

255.255.255.0 can be selected by pressing return.
4. Select the “W” option for the WAN IP Address, and set the desired unique address.
5. Select the “t” WAN P-t-P Address option and enter the Point to Point IP address of the

WAN hdlc port at the other end of the link. The other end is set to this unit’s WAN hdlc
port address, thus cross connecting them.

6. Select the “G” option if you wish the router to have a default Gateway IP address, and set
it to the proper value. Normally the link end with a web Gateway would use that device’s
address and the other end would use the address of the hdlc0 port on this end. See
Section 3 for more information.

7. Select the “M” LinkMode option, then enter “r” or “R” to select the Router mode option.
This sets the variables Router=yes and Bridge=no.

8. Select “S” for Save and enter to quit the configwiz program.

You will need to reboot the SnIP. Type “reboot” and hit enter. If you are only switching from
Bridge to Router mode you will not have to reboot.

Static routing applications get their routing rules from the “/etc/config/static-routes” file. Unless
you are familiar with the Linux route command you should study its application on the web. An
example of point to point router links is shown later in this document, Section 3.

Dynamic routing is provided via one of two methods: either the standard Linux built in router
daemon, “routed” or by using the open source Zebra/Quagga router suite, which requires setup
and configuration in multiple files. No information on the operation of Quagga is given here.

The SnIP also supports the powerful Linux “iptables” filtering, network address translation (NAT)
and packet mangling functions. Like routing, it is best described as “knowledge intensive” and
requires study of its operation. The web is a good place to find information on iptables.

Note 1: When set to Router mode the hdlc link protocol is automatically changed to
Cisco HDLC protocol (CHDLC). This behaviour can be changed, but probably
offers the most compatibility with other equipment.

Note 2: Any form of routing normally requires that a particular process variable
named “ip_forward” be set to 1. See section 3.1.1.2 to insure proper setting.

1.0.4 How To Configure the SnIP as a Monitor/Control Device Only
This configuration is used only if the bridge and/or router functions are not desired. An example
may be if a modem is using a different main data interface such as V.35 or RS-449, but the
monitor and control functions of the SnIP are needed. A Snip has two main monitor control

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-5

applications built in. One is the command line “m500ctl” and “m49ctl” programs and the other is
the web server at the SnIP’s IP Address. The SnIP’s IP Address is part of OSI layer 3 and must
be within the connected LAN’s address mask. It is used for functions other than bridging or
routing, for example tftp, telnet/ssh control and the built in web server.

1. Start the configuration wizard by executing the command at the command line
 “configwiz” option selection below is not case sensitive

2. Select the “L” option for the LAN IP Address, and set your IP address.
3. Select the “N” option for Network Mask and set the Network Mask. The default of

255.255.255.0 can be selected by pressing return.
4. Select the “G” option if you wish the SnIP’s Ethernet port to have a default Gateway IP

address, and set it to the proper value.
5. Select the “M” LinkMode option, then enter “n” or “N” to select the “None” mode option.

This sets the variables Router=no and Bridge=no.
6. Select the “W” option, then press the enter key without entering any HDLC Address. This

will prevent the SnIP from loading the driver module for this port since it is not used.
7. Select “S” for Save and enter to quit the configwiz program.

You will need to reboot the SnIP. Type “reboot” and hit enter.

Caution: there are two possible internal connections depending on the modem’s use. For
the special applications with a SnIP, but redundancy on the main data connector, then the
internal connection to the modem is missing the actual data and management interfaces.
In that application the modem polling should always be set to “no”, the Link Mode set to
“none” and the WAN hdlc0 address should also be set to a blank (no entry). These three
items cause the modem to not poll and not load the internal interface driver – both
necessary because there is nothing connected to these two ports. See Section 6.1.2 “A
Unique m49ctl and m500ctl Case – Redundancy”.

1.0.5 How To Set Persistent Configuration Options
Configuration options are stored in multiple places in a Linux system, and can vary from one
system to another. Within the SnIP standard and non-standard default configuration values are
stored as follows:

! /etc/config/system Contains the options set by the configwiz program. To modify run
configwiz and save the changes.

! /etc/config/static-routes Contains static routes and alternately the default
gateway if not done in configwiz. To modify, use nano or vi on this file to edit.

! /etc/sysctl.conf Contains system control settings, and must set the
“ip_forward”.flag to 1 for routing to work. See Section 3.1.1.2.

! /etc/resolv.conf Contains one or more DNS server addresses required for
Internet operations. A sample can be created with “./mk-resolv”. To modify, use nano or
vi on this file to edit.

! /etc/config/iptables and iptables-config Are the default iptables (filtering/NAT)
data and configuration files respectively. These files must be set up by a user to work. To
create or modify, use nano or vi on these files to create or edit.

! /etc/config/Quagga, zebra, rip etc.conf Contains the default dynamic route
configurations for the Quagga, zebra, etc routers. To modify, use nano or vi on the
appropriate file to edit the configuration.

! /etc/profile.d/*.sh Each shell script with an “.sh” extension placed in this directory is
executed on power-up. To create, use nano or vi, then chmod 755 to set permissions.
For example a common one that we provide by default is the “baseconfig.sh” script which
might contain the following two lines:
 export TERM=vt100
 rdate –s 129.6.15.28

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-6

Before any changes to these configuration options will take effect, you will need to reboot the
SnIP. Type “reboot” and hit enter. Switching between Router and Bridge mode is a special case
and may not require rebooting if all other variables are correctly set.

There are two ways to switch between Router and Bridge mode. The normal method described
above using the configwiz program results in the variables in the /etc/config/system file being
modified which insures that the current configuration is restored on power up. You can also
change modes using the “reconfig” command which will maintain the setting only as long as the
SnIP is not rebooted.

If you create a persistent configuration that does not allow you to access the SnIP via the
Ethernet port for Telnet or SSH, you have several options. One is to use the modem front panel
to set a new ip address, second, the console management port may be accessed with a
physically connected PC and last, see Disaster Recovery in Section 4.7 below.

1.0.6 Basic Linux and SnIP Operating Commands
Linux is a collection of many related individual programs that give it a lot of power. Unless you are
familiar with each of these it is very difficult for someone new to Linux to easily and properly set
up communications configurations. We have tried to make this a little easier by providing several
basic functions that aid users in setup. Several of those are discussed briefly here:

Three main scripts are used to perform basic configuration. The ‘configwiz” program has already
been discussed and used above. Two more are the “config” command and the “reconfig”
command. The “config” command shows the current settings contained it the “/etc/config/system”
file maintained by configwiz, plus a few other system release numbers.

Changes made to configwiz are read on power on and are thus “persistent”. The “reconfig”
command allows changing the basic Link Mode type between Bridge, Router or None on-the-fly
without storing changes in the system file. Thus changes made with reconfig are temporary until
power off or a reboot. The configwiz program uses the reconfig script to change the LinkMode
when it is modified.

Other important commands within Linux are the ifconfig, route, iptables, ebtables and brctl
commands. You should read some basic information on each of these on the web or in other
documentation.

To allow modem monitor and control from the SnIP, we include the “m49ctl” and “m500ctl”
command line programs described later in this document. There is also a simple script named
mdm-find in the root home directory to find modems attached to the SnIP’s control ports.

The SnIP is not limited to specific functions related to the satellite modem. The full power of a
modern implementation of Linux version 2.6 is available. Programming in bash scripting and Perl
plus the many precompiled Linux applications from ping, traceroute, grep, rsync and wget to a
fully functional web server are fully available to the user. Some minor limitations are introduced by
compiling against uClibc and using “BusyBox”, but most users will not see these.

We’ll start with an often used and basic operation, which is to create a remote connection to a
SnIP via TCP/IP called a “session”.

1.0.7 How To Create a Telnet Session with the SnIP
A telnet session is a remote terminal connection to the SnIP via TCP/IP, either on the local
Ethernet interface or over a link on the hdlc interface. It looks and acts just like a hard serial
connection via the “Console” connection on the modem rear panel. It is also called a virtual
terminal connection. Kernel messages are not shown on virtual terminals.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-7

When a usable IP address is assigned, the telnet connection can be made from a Windows
machine using a DOS Command prompt window or from a shell terminal window in Linux. The
command is the same for either – “telnet [ip address]”. For example if the IP address is set to
192.168.150.210 then the command is:

telnet 192.168.150.210
The SnIP should respond with the login prompt and then the password entry:

 The default Login is ‘”root”, and the default password is “datum” .

Almost everything possible from a direct Console connection is also possible from a virtual
session under Telnet. Please see more information concerning security and Telnet and SSH in
later sections. Telnet sessions are very useful on the local LAN and as a remote connection as
they do not require physically connecting a serial port to the SnIP’s console port, but provides the
same capabilities. Telnet and ssh sessions can also be started using PuTTY from Windows.

Telnet sessions use the Linux command line interface and by default are established in the Bash
shell. Once logged in you can type commands and get responses. For example you might try
typing “whoami” which should give the response “root”. The Linux equivalent of the Windows “dir”
command is “ls”, so to see the current directory contents type “ls” or to see the “/bin” directory
type “ls /bin”.

1.0.8 How To Log into a Quagga Session
The Quagga/Zebra router has multiple ways to log into it. All except the first “vtysh” method
below require that at least the “zebra” and one or more routing protocol daemons be running
already. All protocols are turned off by default. To turn on individual protocol daemons you must
go to the “/etc/Quagga/daemons” file and set the value to “yes” for zebra and at least one
protocol. Then reboot the SnIP.

Most of these interfaces/sessions appear very similar to a Cisco IOS session, but it is not as
“unified”. Help and command completion is almost identical to an IOS session also, so using the
“?” and tab key can be used to show what is possible and automatically complete commands.

One interface is called the vtysh, short for Virtual Terminal Shell. You can log into that either from
the console () or a telnet root session by typing “vtysh” at the prompt. You will normally not be
asked for user authentication because you have already logged in as the root superuser.

The other login sessions are only reachable via telnet, and each router protocol must be
configured for access via specific interfaces. The default interface specified is only the internal
“lo” or loopback ip address of 127.0.0.1, meaning that you cannot telnet in from either the
Ethernet or hdlc ports. Reading the Quagga documentation is very important in this respect. See
Section 8.2.4 for more information on configuration of the Quagga/zebra suite.

The router protocols include zebra plus individual sessions for each running protocol. Each
protocol has a unique access number associated with it and that number is appended to the
telnet session invocation to log into that protocol. The list is shown below, and for example to log
into the RIPD protocol (if it is running) on a SnIP with the IP Address of 10.9.3.22 you would type
“telnet 10.9.3.22 2602”, assuming you had set the ripd.conf file to allow access from a physical
port. From an existing SnIP telnet session you could also type “telnet localhost 2602”.

Protocol Access Notes
--
zebrasrv 2600 # zebra service (Not working?)
zebra 2601 # zebra vty
ripd 2602 # RIPd vty
ripngd 2603 # RIPngd vty (Only with IPv6)
ospfd 2604 # OSPFd vty

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-8

bgpd 2605 # BGPd vty
ospf6d 2606 # OSPF6d vty (Only with IPv6)
ospfapi 2607 # ospfapi (Unknown Not working?)
isisd 2608 # ISISd vty (Not in all versions)

The password, prompt name and other configuration for each of these protocols are determined
by the individual configurations files in either “/etc/config” or “/etc/Quagga” as determined by your
installation.

Quagga/Zebra like all routers are complex. It is highly recommended that you read the
documentation available on the web at “http://www.quagga.net/” . We are currently using the
latest stable version which is 0.98.6.

1.0.9 How To Create New User Accounts
As shipped the SnIP has only two users – the Linux “root” superuser that has access and
permissions to modify or do almost anything that Linux is capable of, and the “quagga” user and
group intended for control of the Quagga/Zebra routing suite. While that may be suitable for some
applications, it is often desirable to create new users with limited access and permissions within
the Linux structure. Linux uses the concept of “users” and “groups” of users, each with names
and IDs - UID and GID respectively. The concepts and procedures for managing users and
groups should be reviewed in Linux documentation or on the web. The basic commands used in
this distribution of Linux are “adduser” and “addgroup”, with their complementary “deluser” and
“delgroup” functions.

The standard locations for an individual user’s files are in the “/home/<UserName>” directory,
which is currently blank in the SnIP. By default that is where the Linux “adduser” command will
create a new user’s directory. So in its simplest form, if the root creates a new user with the
command “adduser mike”, then after inputting mike’s password information, the program will
automatically create a new directory named “/home/mike”. When mike logs in he is taken directly
to the /home/mike directory. Note that the root user’s home directory is “/root”, and Quagga has
no home directory.

Account passwords (including the root) are set or changed using the “passwd” command. For
example, to change the Quagga user password for logging in as the quagga user you would type
“passwd quagga”. The routine will also ask to repeat the entered password to insure that it is
correct. Note that this is not the same as the router daemon passwords discussed later.

1.1 More Overview Information on the SnIP
The above are very brief introductions to setting up the SnIP. It is however a full computer, with
only the video adaptor and a large hard disk missing. In addition to the bash interpreted
command language, the SnIP also has the miniPerl version of the Perl programming language
plus the full capabilities of Linux at the user’s disposal. Following is more information on the
hardware and software present in the SnIP. The full name of this device is SnIP875, indicating its
use of the MPC875 Freescale processor at its core.

All of the standard software currently on the SnIP in the Linux implementation is open source,
under the GPL license. The user is permitted to modify or use this software as they see fit without
limitation. The setup to compile this software however is quite complex using multiple cross
compilers. See the technical information at the end of this document for more information on the
software and applications plus the locations and compilers/libraries used.

A brief hardware description follows:

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-9

1.1.1 Interfaces
The SnIP has 3 basic interfaces which are discussed, the Control Port, the Ethernet TCP/IP Port
and the internal Synchronous Serial Port. Other interfaces are listed here but not discussed in this
guide:

Rear Panel Interfaces -
• “RS-232 Control Port - DB9”– In normal operation the rear panel DB9 has a standard

RS-232 Console port used as the main tty interface to Linux (and U-Boot). The port is set
up to operate at 38.4 kbps, N, 8, 1. Connect this to a Windows PC running Hyperterminal
or a Linux PC running a terminal emulation program such as gtkTerm. It shows the boot
status and allows logging in as root locally. Log in as “root” and use the password
“datum”. Once set up the SnIP may be logged into remotely over the network using
Telnet or SSH with the same password. Named “ttyCPM0” in Linux.

• “RS-485 External Control Port – DB9”– The SnIP can talk to other modems locally by
running a daisy chain RS-485 connection from this port, as controller, to the other
modem’s J6 Remote Control connection. By default this operates at 9600, N, 8, 1.
Named “ttyU1” in Linux. Since this shares the same physical connector as the RS-232
Control Port, then a break out cable is required to use both simultaneously.

• “Ethernet / TCP/IP Port – RJ-45” – Standard 10/100 Ethernet connection with auto-mdx
functions. Named “eth0” in Linux.

• “USB Control Port – USB type B”. Only very partially implemented in U-Boot and not at
all in Linux.

Internal Interfaces -
• “Modem Synchronous Serial Data Port - HDLC” – or High-level Data Link Control is a

bit oriented synchronous data link layer protocol. HDLC is commonly used for Wide Area
Network (WAN) communications protocols at the OSI model layer 2. It may encompass
both the physical and electrical layers. It is a packet based structure which includes
opening and closing flags, addresses, a checksum and a “bit stuffing” method to insure
that the flags do not occur within the packet itself. There are several commonly used
forms of HDLC in use, mainly the standard and a version modified by Cisco with a
corresponding Cisco header. The HDLC protocol in various forms is used on the satellite
link connection between SnIP cards. Depending on the driver module loaded this
interface is named either “hdlc0 ” or rarely “eth1”.

The standard HDLC port driver is called snip_gen_hdlc, named because it can attach
itself to a common set of Linux generic HDLC control routines. A user program named
“sethdlc” permits control of the protocol used by this driver.

• “Modem RS-232 Internal Control Port” . The modem is monitored and controlled via
this interface built into the internal 40-pin ribbon cable between the SnIP and Modem.
The port is the same one used on the normal rear panel 37 pin serial data interface, and
therefore precludes using the standard Y cable for redundancy. This port operates at
9600, N, 8, 1. When enabled the SnIP runs a small “daemon” that sends “keep-alive”
packets on this port to let the modem know that all is well with the SnIP. This port is
referred to as “ttyU0” in Linux. By default this port operates at 9600, N, 8, 1.

• “Compact Flash Socket” . Not fully developed yet. Its intent is to add additional disk
drive like storage and allow specialized software/hardware addition.

In Monitor/Control applications, the ports used are the RS-232 Local Control Port, The RS-232
Internal Modem Control Port and the RS-485 External Control Port. The rear of the modem and
the external ports are shown below.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-10

Figure 1 – SnIP Rear Panel Connections

On the lower edge of the Ethenet LAN connection are two common LED indicators showing “link”
status and connection speed. When both are lit then a link has been established with the other
end of the cable and the speed is 100 Mbps.

The 3 vertical LEDs show (from the top) Ethernet traffic activity, USB enable and Control Port
currently in RS-485 mode when lit.

LAN 10/100
Base T Auto
MDX Port

RS-232 and
RS-485
Control Ports

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev

Below is a block diagram of the SnIP showing its main components and interfaces:

1.1.2
The SnIP
added to
It can als
and L-Ba
modems

P2 – Modem
Connector

Rear Panel

MPC875 Processor

SDRAM -
32MB, 32bit

CS1

Flash -
16MB, 16bit

CS0
Serial

EEPROM

Compact
Flash
Socket

PCMCIA

Add/Data Bus

RS-232
Control

Port

USB
Port

10/100
Ethernet Phy -
Intel LXT972A

SPI-
UART

232/485

SPI
FEC2SCC4 SMC1

Modem
Interface

Port

Power Supply
3.3V & 1.8V Out

5Vin

RS-232
Console

Port

RS-485
Control

Port

USB
Serial

EEPROM

Switching

 Figure 2 - SnIP875 Block Diagram
0.28 Page SnIP QSG-11

Compatibility
 described here is only for use within either M5 or M500 series Modems. It can be

 any of the M5, PSM-4900 modems including the 70 MHz, Hybrid and L-Band versions.
o be added to any of the M500, PSM-500 series modems including the 70 MHz, Hybrid
nd versions. It will work in modulator only and demodulator only versions of these
, although obviously with limitations.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-12

It is potentially possible to use the SnIP outside of a modem. For use as an external bridge or
router it would need a power supply and appropriate driver/receiver ICs for the desired
Synchronous Serial Protocol, i.e. RS-449 or V.35. As a Datum Systems modem controller it only
needs power and RS-485 connection to modems to be controlled. Some of the control lines on
the modem interface may need to be set via hard connections in this case.

1.1.2.1 Protocol Compatibility
When a SnIP is set to the standard bridging application it loads the generic HDLC driver and sets
the protocol to “Ethernet encapsulated”. This is the same protocol used by the previous
generation “SDMS” card with bridging software loaded. Therefore two link ends, one with an
SDMS and the other with a SnIP will interoperate without anything else required.

A SnIP set to routing configuration will by default load the generic HDLC driver and set the
protocol to “Cisco” or CHDLC, This should allow the SnIP to link properly with either another SnIP
in the same Link Mode, the older SDMS with router code installed or a router on the far end
connected to the modems’s standard synchronous serial data port. The latter 2 are not
guaranteed as it has not been fully tested yet, but currently these seem to work.

1.2 Overview – Initial Setup
The SnIP875 is a small low power computer running a fairly standard embedded Linux operating
system (currently Version 2.6.15). It has two specialized interfaces that most common computers
do not have. Each of these interfaces has custom drivers created and compiled into Linux to
allow their use directly by Linux.

First and most important is a high-speed synchronous serial port that connects internally to the
same port that appears on the rear of the modem as the “Data Interface”. This port has the Linux
name “hdlc0” by default, but may be termed “eth1” if an alternate Ethernet encapsulated only
driver is installed. The interface logic is low voltage (3.3V) TTL, capable of tolerating 5V TTL. The
physical interface to the modem is buffered, and tri-stated when not selected by the modem since
this interface is shared with the modem’s normal rear panel data interface transceivers.

The second unique port is a switchable RS-232/RS-485 communications port. When set to
internal it talks to the modem as a remote control device. When switched to external it talks on 4
pins of the rear panel DB-9 connector as a 4-wire RS-485 control port, which can be used to
control other modems within a station. The internal modem control connection is a standard Linux
serial port named “ttyU0”, while the external 485 port is named “ttyU1”.

The Linux operating system allows the logical connection between the SnIP’s two data Interfaces
to be operated in many modes depending on the application, but basically they come down to
either “Bridge” or “Router” applications. Bridge mode is the default for the SnIP unless the
configuration is changed as shown earlier, and described in more detail later. It is also possible to
use the SnIP as a modem controller for 1 or more modems in a single location. Linux has a
wealth of built-in and external programs available for operating bridges and routers. The standard
low level bridge control is via Linux “brctl” and the low level router control is via “route”, both built
into the kernel itself.

The bridge is a very straightforward and simple device to use. It requires minimal setup for normal
operation. The SnIP Ethernet Bridge converts the Ethernet packets to use a basic HDLC packet
structure over the satellite link. The modems at both ends of the link must be either SnIP
equipped or one end can be SnIP and the other the older “SDMS” with bridge code installed.
These instructions naturally only apply to the SnIP and not the SDMS. The modems on the link
must be set up in a complementary fashion. That is, whatever parameters are set on the transmit
at one end of the link must also be set the same for the receive on the other end.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-13

• Choose a mode of operation suitable for the service desired. In most cases the standard
settings of QPSK with the Viterbi or Turbo Product Codes FEC at rate ½ or ¾ is suitable.

• Set the data rate based on the expected level of traffic. In the M5 modems, at rate ¾ they
are capable of up to 4.92 Mbps operation, while the M500 series is capable of 29.5 Mbps
operation if equipped with the proper “Feature Set” and mode settings. Suitable
performance may be achieved at a modem data rate of 256 kbps or less for some
applications. The data rate setting should be determined by the systems engineer. Since
TCP/IP and Ethernet are basically asynchronous packet protocols, the use of a lower
bandwidth channel limits data flow when multiple users are making constant demands on
the channel. See the information in Sections 2.1 of this Appendix for more information on
refining the settings to help optimize them for a particular application.

• The SnIP interface is unaffected by and compatible with all of the FEC and Multiplexer
Options available in either series of modems. The SnIP is however capable of operating
as an alternate AUPC channel for systems requiring that function.

• Connect the SnIP 10/100 BaseT interface on each link end to the appropriate network via
switch or router interfaces.

• Two basic settings are required to use the SnIP.

1. Both ends must enable the SnIP interface. This is done using the modems front
panel interface and setting the <Interface: I/O - Mode> parameter to “SnIP”. This is
currently option number 8.

2. The IP address of the SnIP card should be set to reside in the system where it is
used. The IP address is set at the <Interface: SnIP – IP Addr> parameter. The
default for this parameter is 192.168.0.0.
Since the bridge function is by definition a layer 2 device, it does not work on
IP Addresses. This parameter is only used to control the bridge from the
Ethernet connection itself. Most systems however will require an IP address
within its local range.

1.2.1 Overview – First Time Startup and the Configwiz Script

Your SnIP may have already been initialized, especially if it has a strictly bridge or M&C function.

The first time that an un-initialized SnIP is turned on it has no basic configuration files. To set up
the SnIP properly you should connect a terminal such as a PC running Hyperterminal or a Linux
computer running a terminal emulation program such as gtkTerm. Connection is via a standard
1:1 DB9 male to female cable between the computer and the SnIP’s rear panel DB9 connector.
Set the program to operate on a COM port at 38400 bps, 8 data bits, No parity, and 1 stop bit.
This is commonly referred to as “38400,N,8,1”. An uninitialized SnIP automatically runs a small
configuration program named ‘configwiz”. To run the program if the configuration has already be
set up, or to re-run it, use the command line entry “configwiz”. If the SnIP is already running you
will have to log into the console. At the “user” prompt type “root”, then at the password prompt
type the default “datum”. This can be changed later, but it is the default password.

Normally the configwiz script has already run and set the IP Address, mask and other basic
elements to defaults. Therefore to set the IP address for any use including Telnet or SSH control
the script will have to be re-run by logging into the console and running the configwiz script.

Answer the questions in the configwiz program, specifically setting the IP Address to a value
suitable for your network. Then use the “s” option to save the configuration. The program will
automatically create a file “/etc/config/system” that contains the basic information entered, plus a
few more entries.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-14

One of these added entries is the “LinkMode” line which defines whether the SnIP is set to Bridge
mode (default) or Router mode or None (used when only a M&C function is desired). The
BRIDGE setting determines if the bridge initialization script is run on power up, setting up a basic
bridge by putting both the eth0 and hdlc0 interfaces into a new bridge named br0. br0 takes on
the MAC and IP addresses of the eth0 interface allowing it and the web server to be accessed.

If you do not wish the bridge to be set up on power on, you must edit the file “/etc/config/system”
with either the configwiz program or an editor like nano to modify the LINK_Mode, BRIDGE and
Router lines. The preferred method is to run the configwiz program script and select the desired
LinkMode option.

Either the configwiz script or editing the system file directly with the “nano” or “vi” editor can also
be accomplished via a telnet session. When running the nano editor from a PC Hyperteminal
direct console connection you may first have to set the “TERM” type environment before nano will
run properly. The command is “export TERM=vt100”. Then you can use “nano /etc/config/system”
to modify the file and save it. On the next reboot the changes will be in effect.

Note : If you have modified the operating configuration using the “reconfig”
command, the config and configwiz programs may not properly display the current
operating configuration. They will show the power up configuration.

1.2.2 Overview - Modes of Operation

There are a variety of functional modes afforded by having a fairly complete Linux based
processor managing the connections between the rear panel user accessible connections and
the satellite side internal connection. In this document we focus on only the two most common
functional processes; Bridging and Routing. In bridge mode there is only a single function
available with the SnIP. That is to perform standard bridge functions of filtering and forwarding
packets based on the MAC Address.

Bridging is an OSI model layer 2 (link layer) function, working with MAC addresses. The bridge
functions include dynamic production of a “hash” table used to determine which Ethernet
addresses should stay local and which should be passed over the satellite link.

Packets transferred over the satellite link are first converted to HDLC format packets. At the far
end the receiving SnIP converts the packets back to the original Ethernet packet. For those
packets transferred the satellite link is transparent except for the introduction of a 250 mS path
delay. This delay can be significant in some applications. There are many different types of HDLC
packets in use today and those used by the SnIP are intended to be compatible with specific
formats. The basic format is that generated by Motorola QUICC processors.

The HDLC protocol port to the modem has no driver installed into the kernel. It is loaded as a
module, so that it can be changed for possible different service types. Initially two drivers are
written for this port. Note that the standard and default driver loaded is the second one listed here
which can function in either Bridge or Router modes.

! The first is strictly Ethernet encapsulated with an HDLC structure, and is named
“snip_raw_hdlc”. This is the basic structure used by an SDMS card with bridging software
loaded. You would load this module using the command “modprobe snip_raw_hdlc”.

! The second is named “snip_gen_hdlc” and is a more sophisticated driver intended to
attach to Krzysztof Halasa’s generic HDLC support routines for Linux. These routines are
commonly used in X86 PCs running Linux with one of several PCI type serial
synchronous cards (for example Sangoma). You would load this module using the
command “modprobe snip_gen_hdlc”. It supports several protocols including “raw”,
“eth-raw”, “Cisco” and “frame-relay”. To set any of these protocols you use the separate
“sethdlc” command. It has minimal usage instructions included in the program.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-15

Either of these hdlc driver modules can be loaded and unloaded, but unless you are very
knowledgable about Linux and drivers it is suggested that you use the standard snip_gen_hdlc
driver.

The configwiz, reconfig and bridge start/stop scripts currently uses the generic hdlc module, but
could use the raw module as well.

There are several not immediately obvious restrictions on use of HDLC drivers and protocols.
There are two main protocols used over the satellite’s synchronous serial port, either “Ethernet”
or “Cisco”. The bridge function must use the Ethernet protocol. The Linux bridge is not capable of
handling packets which contain the Cisco protocol headers. The Router mode however could use
either, but is standardized on the Cisco protocol since that is intended to allow connection to
other equipment types that use this protocol. There are three specific cases as minimum. First is
if an SDMS card with routing software loaded is on the other end of the link. Second is if no
Ethernet interface was on the other link end, instead with a WIC card attachment to a Cisco
router. And the third are some systems already built using Linux PC based routers with Sangoma
type synchronous serial PCI interface cards.

2.0 SnIP875 Ethernet Interface Setup and Operation

The addition of the SnIP Ethernet interface card to the PSM-4900 or PSM-500 modem provides
an additional selectable interface to the existing complement of synchronous serial interfaces
already available at the modem front panel I/O controls. This Ethernet interface combines two
new standard types: a Packet based Ethernet physical interface with TCP/IP and bridge functions
or a TCP/IP interface with routing functions.

2.0.1 Multi-Purpose 9 Pin "D-Sub” Female Connector
 RS-232 Console and/or RS-485 Control

The SnIP uses a single connector for both an RS-232 Console connection and a RS-485 Party
Line control output. It is a DB-9 female connector labeled 485/Console Cntrl. Both connections
can be made simultaneously when connections are made via a “break out” cable. Although not
always necessary this cable isolates the 485 connections frrom a local RS-232 to computer
connection, and isolates the 232 lines from local RS-485 control connections.

The SnIP’s internal Linux operating system is set up with 3 “tty” devices normally available with
the following fixed connections:

! ttyCPM0 – Serial RS-232 Console port to the rear panel Console port.
! ttyU0 – Serial RS-232 control port to the internal modem control lines.
! ttyU1 – Serial RS-485 control port to the rear panel 485/Console port.

The purpose of RS-232 ttyCPM0 connection is to provide a local console port used by either a
terminal, or a PC acting as a terminal by using software such as Hyperterminal, Procomm or
UUCP and gtkTerm on a Linux machine. Some literature may also call this a “management” port
and is considered secure because its use does not involve the internet. The default connection is
38,400 bps, 8 data bits, no parity and 1 stop bit. (“38400,N,8,1”). It is the default console device
for both the U-Boot bootloader and Linux. All standard messages and errors use this port.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-16

RS-232 Terminal 9 Pin "D-Sub” Female Connector

Rear panel connector labeled 485/Console Cntrl

 RS-232 DB9 Female Terminal
Connector Pin Assignment

Signal Function Pin #
Ground 5
Transmit Data
(Output)

2

Receive Data (Input) 3

The female connector and wiring are such that a standard DB-9 male to female cable can be
used to connect the SnIP to a PC’s standard COM1,2 (Windows) or ttyS0,1 (Linux) serial
communications ports. If the external RS-485 port is not being used no provision is required to
block any of those signal which might interfere with the control lines in common use.

Rear Panel connector labeled 485/Console Cntrl

 RS-485 DB-9 Female
Connector Pin Assignment

Signal Function Pin #
Transmit + (Output) 8

Transmit - (Output) 9
Receive + (Input) 1
Receive - (Input) 6

The RS-485 connection is available for special programming running in the SnIP to control
external RS-485 devices. It uses the same UART device as the internal ttyU0 connection to the
modem, which is not a problem because both ports only initiate traffic under control of the SnIP’s
processor. It is not intended for or is usable as a control input. It can however be linked to multiple
other modems set into RS-485 mode, all controllable by the SnIP.

2.0.2 Console and RS-485 Connections

In many applications the only connections to the SnIP’s rear panel DB9 connector is for initial or
occasional console connection to a computer running a terminal emulation program. In this case
the cabling required is a simple DB9 Male to Female 1:1 cable.

If the SnIP is being used for Control applications via the rear panel DB9’s RS-485 connections
then additional wiring may be required. Specifically a “breakout” cable is used to separate the RS-
232 and 485 lines so that interference is not possible. The diagram below shows the fabrication of
such a cable and the wiring diagram of a typical connection.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-17

Lines 1, 2
Cut

1

5

6

9

1
2

9

1

5

6

9

5

9

6

1

RS-232
Console

DB9 Female

SnIP
DB9
Male

RS-485
Party Line
DB9 Male

Lines 6, 7, 8
Cut

Lines 3, 4, 5
Cut

SnIP RS-232/485 Control Breakout Cable Fabrication
Using Ribbon Cable and IDC Connectors

Ribbon Wire
Numbers

Figure 3

In this figure, note that several wires are cut. This isolates the RS-232 from the RS-485. The left
hand male connector could be 10 or 20 connectors all in parallel on the ribbon cable for
connection to multiple M5 or M500 Modems.

The wiring diagram below shows the connections made by such a cable between various
devices. Using this scheme a single SnIP can control all the normal modems in a station via the
Ethernet/TCP/IP connection.

Terminal
or

Computer
with

Terminal
Emulator

Terminal
or

Computer
with

Terminal
Emulator

DB9
Serial

Port
Male

2 Rcv
3 Xmt
5 Gnd

DB9
Cable
Connect
Female

2 Rcv
3 Xmt
5 Gnd

M5/M500
Modem

with SnIP
Installed

M5/M500
Modem

with SnIP
Installed

DB9 Cable
Connector

Male

Xmt 2
Rcv 3
Gnd 5

485 SD- 9
485 SD+ 8
485 RD- 6
485 RD+ 1

SnIP DB9
Control -
Female

2 232 Xmt
3 232 Rcv
5 Gnd

9 485 SD-
8 485 SD+
6 485 RD-
1 485 RD+

1 or More

M5/M500
Modem
with No

SnIP
Installed

1 or More

M5/M500
Modem
with No

SnIP
Installed

SnIP
Ethernet
10/100
Interface

J6 DB9
Remote
Control
Female

2 232 Xmt
3 232 Rcv
5 Gnd

1 485 SD+
6 485 SD-
8 485 RD+
9 485 RD-

SnIP RS-232/485 Control Breakout Cable Wiring

DB9 Cable
Connector

Male

Xmt 2
Rcv 3
Gnd 5

485 SD+ 1
485 SD- 6

485 RD+ 8
485 RD- 9

To other
modems

LAN or
TCP/IP

RS-232 Local Console Connection

Figure 4

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-18

2.1 Console/Terminal Mode
The SnIP in an M5 or M500 modem can be interactively configured in the terminal mode from the
rear panel Console DB9 connector. This is the Linux terminal console, and the root user must
sign in and present the proper password before being granted access. Once logged on, the root
user has the full power of a command line Linux system 2.6 available.

The SnIP’s command set and the whole root filesystem were created and compiled against
uClibc, not the standard Glibc used on computers with more memory available. Using uClibc
significantly reduces the root filesystem size.

Most of the common LInux commands are implemented in “BusyBox” which simply eliminates
most of the rarely used functions and switches that have little meaning in an embedded system.
You can see a list of the commands by doing and “ls” in the /bin, /sbin, /usr/bin and /usr/sbin
directories. An example Linux command output is shown below for the “ifconfig” command, which
shows and controls the interface configuration.

Typical terminal output display in Bridge Mode - in this case an “ifconfig” command:

Notice in this output that there are four interfaces shown, br0, eth0, hdlc0 and lo. This was
displayed immediately after boot up with static routes resulting in bringing the hdlc0 physical
interface up and the LinkMode set to bridging. If this were in router mode the hdlc0 line would be
significantly different with “unspec” Link encap and a string of 00-00… for the HWaddr. The

[snip2:0 ~] ifconfig
br0 Link encap:Ethernet HWaddr 00:19:78:00:00:05
 inet addr:192.168.15.82 Bcast:192.168.15.255 Mask:255.255.255.0
 inet6 addr: fe80::219:78ff:fe00:5/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:133094 errors:0 dropped:0 overruns:0 frame:0
 TX packets:97809 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:7567549 (7.2 MiB) TX bytes:13748125 (13.1 MiB)

eth0 Link encap:Ethernet HWaddr 00:19:78:00:00:05
 inet6 addr: fe80::219:78ff:fe00:5/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:17069 errors:0 dropped:0 overruns:0 frame:0
 TX packets:35002 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:2383301 (2.2 MiB) TX bytes:5720376 (5.4 MiB)

hdlc0 Link encap:Ethernet HWaddr 00:01:B6:C4:7F:DE
 inet6 addr: fe80::201:b6ff:fec4:7fde/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:144663 errors:0 dropped:1 overruns:0 frame:1
 TX packets:114852 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:13488107 (12.8 MiB) TX bytes:16078180 (15.3 MiB)
 Base address:0x3f00

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:6940 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6940 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:201260 (196.5 KiB) TX bytes:201260 (196.5 KiB)
[snip2:0 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-19

interface named “br0” is the bridge device. If the driver for hdlc0 had not been loaded, then the
hdlc0 entry would not appear. If bridge mode had not been established then the br0 entry would
not appear. That is one way to determine what driver or LinkMode, if any, has been loaded for the
operating mode and the modem’s data port. If the hdlc0 driver was loaded then the protocol used
can be changed with the “sethdlc” command line function.

The ifconfig command shows the current operating condition, not the persistent configuration that
will be loaded on power up, although they are normally the same.

2.2 Telnet Terminal Mode
Telnet is a basic operating protocol via the internet or local LAN that permits command line
control of equipment. The Telnet mode will look virtually identical to operation of the SnIP from
the local RS-232 console port. This mode is very useful for most local LAN applications.

WARNING: Basic Telnet operation is minimally secure. It asks for a default or user defined
password. Its security is suitable within a controlled LAN environment. SSH is supported
by the SnIP and provides a higher level of security. It is recommended for any application
involving connection via the Internet itself.

Telnet mode requires that a previously setup IP address is already configured.

The Telnet Mode allows all of the control of the local console connection except from any
computer that can address this SnIP’s IP address. When the bridge mode is enabled the bridge
takes over the Ethernet port’s IP address, allowing telnet sessions to be set up. The Telnet
session can also be established from either the LAN or Satellite port sides of a link.

When a usable IP address is assigned the telnet connection can be made from a Windows
machine using a DOS Command prompt window or from a shell terminal window in Linux. The
command is the same for either – “telnet [ip address]. For example if the IP address is set to
192.168.150.210 then the command is:

telnet 192.168.150.210
The SnIP should respond with:

[Hostname] Login:
Password:
 The default Login is ‘”root”, and the default password is “datum” .

If the password is changed it is the responsibility of the administrator to keep track of passwords.
The password can be reset from the Terminal mode with connection to the DB9 “Console”
connector.

With some Windows browser versions the invocation of the URL address of:

telnet://192.168.1.120/
will automatically launch the “Hyperterminal” communications program that is part of many
Windows installations. The Hyperterminal display will mirror that of the DOS command prompt
window.

Multiple user “sessions” are possible simultaneously. Part of the telnet command prompt tells
which virtual terminal is connected.

When the telnet session is no longer needed the user can sign off using the command “exit”. The
SnIP will then close the connection.

Telnet sessions can also easily be set up from a Windows machine using PuTTY.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-20

2.3 Open SSH Terminal Mode
Although Telnet is simple and does ask for a password, it is not very secure. Consider that on the
Internet the password that you use to log into a Telnet session is sent in the clear. The SnIP
supports the common “Open SSH” secure protocol that encrypts everything, including the login.
When the SnIP is started the first time it creates the keys necessary to run ssh. The entire Open
SSH suite includes multiple applications including also scp for secure copy and others.

SSH remote login mode requires that a previously setup IP address is already configured.

Once logged in via ssh the console connection looks similar to a telnet or local console
connection. It allows control of the basic SnIP card itself and its configuration. Control of the
modem is provided by the “m500ctl” or “m49ctl“ application in the basic software set of the SnIP.

When a usable IP address is assigned the ssh session can be made from a Windows machine
using a DOS Command prompt window or from a shell terminal window in Linux. The command
is the same for either – “ssh –l root [ip address]. For example if the IP address is set to
192.168.150.210 then the command is:

ssh –l root 192.168.150.210
The switch after ssh is the lower case “L”. The SnIP should respond with:

root@192.168.150.210’s password:

 The default password is “datum” .

If the password is changed it is the responsibility of the administrator to keep track of passwords.
The password can be reset from the Terminal mode with connection to the DB9 local terminal
connector.

Multiple user ssh and ssh/telnet “sessions” are possible simultaneously.

When the ssh session is no longer needed the user can sign off using the command “exit”. The
SnIP will then close the connection.

SSH sessions can also easily be set up from a Windows machine using PuTTY.

Initial Configuration
The local Terminal or remote Telnet or SSH modes can be used to completely control the PSM-
4900i setup and operating parameters. The Front panel keys initially configure the units network
IP address, subnet mask, and transmit and receive transmission parameters.

2.4 Setting The Unit IP Address
To set the IP Address temporarily you use the normal Linux methods. “ifconfig” will change an
address if it is not in use. If you are running in bridging mode then the eth0 IP Address has been
set to 0 and br0 has taken on what was originally eth0’s address. To shut down the bridge, the
command “bridge stop” should work.

To set the IP address so that it will automatically start with that address use the “configwiz”
script. It will set the value in the etc/config/system file. Changes of this type are permanent but
require that the SnIP be rebooted.

2.4.1 Setting IP Address and Mask from Front Panel
Limited monitor and control of the SnIP is available using the Modem front panel. The front panel
can tell you if a SnIP is installed and enabled plus its version, serial number and operational
status. The only controls aside from selecting the SnIP as the current data interface are the ability
to set and read the LAN IP Address and LAN Net Mask. Setting either of these values from the
front panel will result in a reboot cycle in the SnIP.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-21

3.0 Basic Operation Setup
There are two main operation modes, Bridging and Routing. Both of these defined functions
require at least two interfaces to be present. In the SnIP these are the eth0, RJ45 type 10/100
Ethernet port and a second high speed synchronous serial port, hdlc0 internally connected
between the SnIP card and the modem. The classic basic protocol used for this serial
synchronous port is “HDLC”.

We currently have two Linux drivers for this port implemented as modules, meaning they are not
built into the Linux kernel itself, but are loaded or unloaded on demand. Unless the LinkMode is
set to “None” and the hdlc0 address is defined as null (blank) then the standard generic hdlc port
driver is loaded by default. Any alternate driver must be loaded by the Linux “modprobe”
command. This is normally done by software based on the type of operation selected. The two
drivers available currently are “snip_gen_hdlc” which has the ability to bind with some standard
Linux “generic” protocols for Ethernet or Cisco type encapsulation, and a simpler “snip_raw_hdlc”
driver that only uses the standard Ethernet encapsulation. This second type is fully compatible
with the former SDMS Ethernet interface in bridging mode. These drivers may change in the
future.

3.0.1 Linux Startup Note
Linux manually starts processes and services by typing commands in a terminal window. These
same processes can be automated to start services desired at power on by scripts. The startup
process, scripts and locations vary from one Linux distribution to the next. Most of the SnIP
procedures are common to Debian type systems.

3.1 Basic Network Topologies
Having read some about the SnIP and its capabilities plus Linux and the incredible range of
functions and procedures that it can accommodate, you are possibly confused about how to set
up your modem and the SnIP. All of this capability and complexity is aimed at meeting some
basic connection types via satellite that are generally termed “Network Topology”. There are
currently only a few topologies that are needed to accomplish common tasks. These topologies
come down to two main types:

! Point-to-Point Links with two main variations – Bridge or Router.
! Point-to-Multipoint Links with two main variations – Managed and Un-Managed.

3.1.1 Point-to-Point Links
These are the simplest type of links. Whether a bridge or a router SnIP configuration (LinkMode)
is required depends on what is on each end of the link as follows.

3.1.1.1 Bridging
If the two ends of the link are intended to connect two segments of the same Network LAN with
the same IP Address range then a Bridge is the proper configuration. For example if a main office
has one or more remote offices and you want them to all be on the same LAN then you use a
Bridge. An example is shown below.

In this bridging example note that the IP addresses of all the devices (except the WAN side of the
SnIP are within the same IP Mask range (we assume a Mask of 255.255.255.0). The WAN and
the LAN side port IP addresses of the SnIP are actually set to 0.0.0.0 by the bridge, and it is the
bridge device, br0 that has the IP Address shown on the SnIP below. Both SnIPs use the
Gateway address of 192.168.1.1. DHCP, assumed to be provided by the DSL modem, works on
both sides of the satellite link. This is a very easy set-up.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-22

There is also no other information required to tell the bridge to take Ethernet packets not destined
for the local end to be sent to the WAN port. The bridge does that automatically.

Satellite dish Satellite dish

Satellite

SnIP
Bridge

SnIP
Bridge

PSM-500
Modem

Internet

PSM-500
Modem

DSL
Modem

PC Computer

Switch

PC Computer PC Computer

Remote End

Near End

Gateway
192.168.1.1192.168.1.101192.168.1.104

192.168.1.82192.168.55.2**192.168.55.3**192.168.1.83

192.168.1.106

SnIP Bridging Application** Set to 0 by bridge

Figure 5 – Point-to-Point Example Bridging Diagram
You could literally take an existing LAN all connected by Cat 5 cable and insert a pair of SnIP
equipped modems in Bridge LinkMode in place of one of the cables and everything should
continue to operate as before. The individual computer configurations would not have to change
and functions like DHCP will continue to operate as mentioned above.

3.1.1.2 Routing
If the two ends are part of different networks and are intended to be isolated other than the
transmission facility provided by the satellite link then a Router is the proper configuration. For
example, two major facilities that want to connect over a satellite link, but maintain their own
addresses would use a Router type link. An implementation of a common example of a Point-to-
Point “Closed” router link is shown below.

Satellite Link
SnIP

Router
SnIP

Router
PSM-500
Modem

PSM-500
Modem

PC Computer

Switch

PC Computer

Remote Site
Main Site

IP=172.20.1.1

172.20.254.254
172.21.254.254

172.21.1.4

SnIP Closed Routing Example

Switch

PC Computer
172.21.1.1

WAN
IP = 192.168.55.3

PtP = 192.168.55.2

WAN
IP = 192.168.55.2

PtP = 192.168.55.3

PC Computer
172.20.1.2

MASK=255.255.0.0
MASK=255.255.0.0

Figure 6 – Simple Point-to-Point Closed Example Routing Diagram

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-23

In this example note that the two LAN networks on the two link ends are not within each others
masks. Specifically note that the WAN Point-to-Point addresses are in use and each end points to
the WAN IP Address of the other end. We have also removed a lot of the redundant pieces such
as the satellite and antennas that cluttered the previous diagram. The LANs at each end are
Class B networks, and the WAN link is a Class C network.

This is called a “Closed” network because it has no other connections to other networks or the
Internet, which would complicate the setup. Routing requires configuration and setup of the
computers and the SnIPs on each end of the link specific to the network topology.

Routing on a SnIP’s Linux computer will only work if the process variable “ip_forward” is set to 1.
It can be checked by issuing the “cat” command at the command prompt:

 “cat /proc/sys/net/ipv4/ip_forward”

if the response is “0” then it can be set until the next reboot by using the command:

 “echo 1 > /proc/sys/net/ipv4/ip_forward”

This variable should normally be set by the initialization process when the sysctl program reads
from its configuration file “/etc/sysctl.conf”. If this file is missing or has been modified to comment
out the applicable line then the contents are as follows.

Sample /etc/sysctl.conf file

Activate IP forwarding

net.ipv4.ip_forward = 1

Activate IP forwarding too!

net/ipv4/ip_forward = 1

The bridge link required no static routes or entries to the routing table or other information,
because the bridge automatically sent packets to the WAN port. The router however requires that
routes be set up in Linux’s routing tables. Basically we want to tell Linux to send specific IP
Addresses encountered to the WAN port. There are normally a minimum of 3 route entries
required at each SnIP:

1. A route to the Local LAN with a Gateway of my Ethernet port, at device eth0.

2. A route to the WAN with a Gateway of my HDLC port, at device hdlc0.

3. A route to the Remote LAN with a Gateway of the Remote HDLC port, at device
hdlc0.

For the example closed network these would be represented by the following route commands at
the Main site end: (persistently added in the “/etc/config/static-routes” file)

1. route add –net 172.20.0.0 netmask 255.255.0.0 gw 172.20.254.254 dev eth0.

2. route add –net 192.168.55.0 netmask 255.255.255.0 gw 192.168.55.2 dev hdlc0.

3. route add –net 172.21.0.0 netmask 255.255.0.0 gw 192.168.55.3 dev hdlc0.
And these routes at the Remote End:

1. route add –net 172.21.0.0 netmask 255.255.0.0 gw 172.21.254.254 dev eth0.

2. route add –net 192.168.55.0 netmask 255.255.255.0 gw 192.168.55.3 dev hdlc0.

3. route add –net 172.20.0.0 netmask 255.255.0.0 gw 192.168.55.2 dev hdlc0.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-24

Add these commands to the “static-routes” file (minus the “route add”) to make them persistent.
These routes are complimentary at each end of the link as you might expect. These are not the
only routing rules that will cause the packets to be routed between the two link ends. Like
programming there are sometimes more than one way to achieve the same results.

One item of note mentioned in routing documentation is to avoid default routes set at the the two
link ends pointing to each other, creating the possibility of a routing loop.

The computers at each end in this example would also have their gateway addresses set to the
IP Address of the local SnIP’s eth0 address.

An example route tables for the SnIP on the remote end of this link might be as follows: Note:
Use the “route” command to view the table.

Remote Site Route Table

The exact routing table display may vary depending on prior routes and the order added.

3.1.1.2.1 Adding an Internet Connection
Now assume that we add a connection to the internet at the Main Site and want both LAN
networks to have access to it. The modified diagram adding a DSL connection is shown in the
figure below.

Satellite Link
SnIP

Router
SnIP

Router
PSM-500
Modem

Internet

PSM-500
Modem

DSL
Modem

PC Computer

Switch

PC Computer

Remote End
Main Station w/
Internet Access

IP=10.9.1.100

10.9.1.92
10.9.2.1

10.9.2.106

SnIP Open Routing Example

Switch

PC Computer
10.9.2.104

WAN
IP = 192.168.55.3

PtP = 192.168.55.2

WAN
IP = 192.168.55.2

PtP = 192.168.55.3

Figure 7 – Simple Point-to-Point Open Example Routing Diagram

[snip3:1 ~] route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.55.0 192.168.55.3 255.255.255.0 UG 0 0 0 hdlc0
172.20.0.0 192.168.55.2 255.255.0.0 UG 0 0 0 hdlc0
172.21.0.0 172.20.254.254 255.255.0.0 UG 0 0 0 eth0
[snip3:1 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-25

The network addresses on each end have changed in this example, but the WAN addresses
remain the same. The same basic routing rules are required for this setup as the previous with
two additions. The Main site SnIP will have a default route set to the address of the DSL modem’s
address. The remote site will have a default gateway route added pointing to the WAN address of
the Main SnIP end. To set these routes you would enter the following commands at each end.
Note, this is only a simple example and setting routing tables can be a complex subject.

Remote End
 “route add default gw 192.168.55.2” (Main WAN address)

Main Station End
 “route add default gw 10.9.1.1” (The DSL gateway address).

The computers on each end of the link will also require additional configuration to allow working
with the web access. At the remote end the computers must have the DNS servers set in their
configuration. Now a command like “ping datumsystems.com” from a computer on the remote
end is passed on to the main end which has a default gateway of the DSL gateway device. This
must be set in the computer even if the SnIP knows these addresses from the “resolv.conf” file.

The computers at the Main Site now having Internet connections may have received their setup
for Gateway and DNS from a DHCP server either in the Internet Gateway (like a DSL
modem/router) or from another computer. They will require at least one added route instruction to
telling them that the remote site’s IP and Netmask and using the local SnIP’s Ethernet port
address as the gateway for this network. Without this last setting these computers would direct
their packets addressed to the remote site out the Internet Gateway and on to the web. For a
Linux computer this is done using the “route add –net…” command as root. On a Windows
computer this is entered as an added gateway in the Network and Dialup Connections#Local
Area Connection#TCP/IP Properties#Advanced TCP/IP Settings Dialog.

Router configuration is one of those disciplines that requires significant study and cannot be fully
explained here. Many good tutorials and books are available for both Cisco and Linux type
routers both on the web and in print. Many of the network variables and their setting from sysctl
are documented at sites like the following:

http://lxr.linux.no/source/Documentation/networking/ip-sysctl.txt?v=2.6.18

3.1.1.2.2 Static Routing Between a SnIP and Cisco Type Router
Cisco routers are very common in networks and it is possible to perform static routing between a
SnIP on one end of a link and typical Cisco router on the other end. The Cisco router would
typically have a V.35 or RS-449 connection to its modem.

The SnIP would have the same type configuration as in the above example. The Cisco router
would require the following configurations assuming it was at the remote site and consisted of a
FastEthernet port (0/0) and a Serial WIC port (0/0).

Router> enable
Router# configure terminal
Router(config)#
Router(config)# interface fastethernet 0/0
Router(config)# ip address 172.21.0.0 255.255.0.0
Router(config)# no shut
Router(config)# interface serial 0/0
Router(config)# ip address 192.168.55.3 255.255.255.0
Router(config)# no shut
Router(config)# ip routing
Router(config)# ip route 172.20.0.0 255.255.0.0 192.168.55.3
Router(config)# end

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-26

Router# copy running-config startup-config
Router# OK

Notice that the routing rule is almost the same as that for the SnIP it replaces. The “ip routing”
command preceding the route is necessary to enable static ip routing.

3.1.2 Point-to-Multi-Point Links
These are more complex links usually consisting of a hub stations that connects to multiple
remotes where a singe outbound carrier contains information for many remote sites. The return
link (inbound to the hub) may take several forms, but they are usually one direction point to point
links. This topology is commonly referred to as a “Star”.

Star configurations are normally forced to use routers instead of bridges. That is because the
bridge logic does not allow splitting the transmit and receive. It sets up its hash tables of MAC
addresses and what port they are located on based on seeing responses to outgoing packets.

The Figure below shows a typical setup of one type of Point-to-Multi-point network. In this one a
single modem at the Hub transmits information to all of the remotes, and there is also a receive
only Demodulator to receive the inbound traffic from each remote. The remotes each have a full
transmit and receive modem.

The Remote sites could be set up to “filter” the incoming traffic to pass only common information
plus their unique information. The return inbound link to the hub from each remote gets combined
at the switch device.

Hub/
Switch

or
Router

Satellite
HUB Site

Remote Sites

Modem/SnIP
A

Demod/SnIP
B

Demod/SnIP
C

Demod/SnIP
D

Remote
Modem/SnIP

C

Remote
Modem/SnIP

A

Remote
Modem/SnIP

B

Remote
Modem/SnIP

D

S
ta

tio
n

IF
 C

om
bi

ne
r/S

pl
itt

er

Figure 7 Point-to-Multi-Point Network Topology

The WAN IP and Point-to-Point Addresses might be set up as follows:

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-27

Point to Multi-Point WAN Addresses
Station Modem WAN IP Address WAN P-t-P Address

Hub A 192.168.55.2 192.168.55.3
Hub B 192.168.55.2 192.168.55.3
Hub C 192.168.55.2 192.168.55.3
Hub D 192.168.55.2 192.168.55.3

Remote A 192.168.55.3 192.168.55.2
Remote B 192.168.55.3 192.168.55.2
Remote C 192.168.55.3 192.168.55.2
Remote D 192.168.55.3 192.168.55.2

There is nothing specific about the particular WAN Addresses chosen. They could have just as
easily beein in the 10.x.y.z or 14.1.1.z ranges. The 192.168’s are standard private addresses but
could be confused with other LAN side IP Addresses of 192.168.1.z commonly used.

Notice that all of the modems or demodulators at the Hub have the same IP and Point-to-Point
addresses, and that all of the remotes have the same complementary WAN addresses. This
works because the WAN addresses are private to each link. Modem A at the Hub transmits to all
of the Remotes at a common address. There are other ways to do this, but are not discussed
here.

Setting the routing rules at each location is more difficult, and is not yet covered in this document.
We plan on adding an example in the future.

3.2 Bridge Setup

To set up the bridging mode it is normally sufficient to simply call the “configwiz script and select
LinkMode and set it to bridge. The configwiz script will in turn call the reconfig script at exit,
reconfiguring the SnIP for bridge operation, without requiring a reboot. On reboot the bridge will
be started automatically. Without the “BRIDGE=yes” line in the “/etc/config/system” file the bridge
start-stop-script will not start the bridge operation.

This configuration was created with a default set of commands contained in a script similar to the
one below, shown only to illustrate the method used:

! modprobe snip_gen_hdlc (Note - only if not already
installed).

! brctl addbr br0
! brctl addif br0 hdlc0
! brctl addif br0 eth0
! ifconfig eth0 0.0.0.0
! ifconfig hdlc0 0.0.0.0
! ifconfig br0 [eth0’s original ip address]
! ifconfig br0 up

In the above lines we used the bridge control program, brctl, to create a bridge called br0 and add
the two interfaces eth0 (Ethernet) and hdlc0 (satellite hdlc port) to this bridge. Then we made the
original port IP Addresses 0 to eliminate them and set the bridge’s IP Address to what the
Ethernet port’s address was originally. That last is necessary so that the web server, telnet and
any other access method to the SnIP are still viable. Note that we set up the normal Ethernet
connection eth0 after the hdlc port. We do that because the bridge takes on the ip address and
MAC address of the last interface added to the bridge.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-28

The actual script used to start and stop the bridge is a little more complex, allowing the bridge to
be built and torn down by software. The script is named “bridge” and is located in the “/etc/init.d”
directory with the other initialization scripts.

More information on using brctl and bridge applications can be found on the web.

3.3 Router Setup

To set up the routing mode it is normally sufficient to simply call the “configwiz script and select
LinkMode and set it to Router. The configwiz script will in turn call the reconfig script at exit,
reconfiguring the SnIP for router operation, without requiring a reboot. On reboot the router mode
will be started automatically. Without the “BRIDGE=no” and “ROUTER=yes” lines in the
“/etc/config/system” file the router mode will not start properly.

The WAN P-t-P Address presented in the configwiz script is not used in bridging mode. It only
appears in ifconfig when the CHDLC protocol is invoked. The P-t-P Address is the address that
the hdlc port will send packets to. In a point to point link this should be the WAN address of the
other end of the link. In a point to multipoint system the transmit P-t-P Address of the hub is used
as the WAN address of all of the remote receives

3.3.1 Setting Static Routes
When Linux starts it looks at multiple configuration files to determine settings for its operation.
One of these is in the “network” script called by the etc/init.d/sysconfig script. It first sets the IP
Addresses of the interfaces and then looks for static routes in a file named “/etc/config/static-
routes”.

If it finds the file it executes the contents by feeding them as arguments to the Linux “route add”
command.
For example this file might have a line as follows for setting the default gateway-

“default gw 192.168.1.1 eth0”

Which is executed by the network script as if the following was typed at the console:

“route add default gw 192.168.1.1 eth0”

This is telling the static route to use the address 192.168.1.1 as the default gateway. The other
standard type of static route command would

“route add -net 10.1.1.1 netmask 255.255.255.0 dev eth0”

Which is setting up a Class C route table entry for any addresses 10.1.1.xxx to be routed out
device eth0. The “dev” can be eliminated as it is the last entry.

This last type of command can be used to set up static routes over the WAN, HDLC modem port
link, and might be entered as:

“route add -net 192.56.76.0 netmask 255.255.255.0 hdlc0”

There is also the Linux “ip route” command which itself will feed routes to the route command.

3.3.2 Setting Dynamic Routes
Next the network script looks for a router suite like Zebra or Quagga (a relative of Zebra) in the
“usr/sbin” directory. If it finds the proper files then it proceeds to set up the defined dynamic
routes according to the instructions in the configuration files located in “etc/config” directory. You
should read the documentation at www.quagga.net. The version installed in the SnIP may vary by
time of manufacture. Check our web site for updates.

http://www.quagga.net/

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-29

3.3.3 Setting Up Multi-Cast Routes
Multi-Cast routing is a special routing protocol that allows setting up special point to multi-point
links. It uses the kernels “mrouted” daemon and also a special version modified for satellite use
named “mrouted-nc”. Multi-Cast routing is normally used for video or teleconferencing functions
and possibly requires additional Network Management System software to permit ease in setting
up and managing the connections.

3.3.4 Setting Up Filtering or NAT using ‘iptables’
The iptables initialization is currently set up in the inittab configuration file, and points to the
“iptables” script in the “/etc/init.d” directory, but the “iptables” configuration and data files do not
exist, so the script immediately exits. To set it up to work you must create appropriate data and
configuration files in the “etc/config” directory. If it finds the proper files then it proceeds to set up
the defined filter policy chains. You should read the documentation at http://www.netfilter.org/.
The version currently installed in the SnIP is 1.3.5 but may vary by time of manufacture. Check
our web site for updates.

Iptables is the advanced successor to the “ipchains” filter functions used in Linux 2.2 and some
2.4 implementations. The configuration rules are similar and involves “Adding” or Deleting filtering
instructions. A typical entry into the “iptables” file might be:

-A FORWARD –i hdlc0 –d 10.9.12.32/24 –j DROP

3.3.5 Setting Up Bridge Filtering or NAT using ‘ebtables’
The ebtables initialization is currently set up in the inittab configuration file, and points to the
“ebtables” script in the “/etc/init.d” directory, but the “ebtables” configuration and data files do not
contain any usable information, so the script immediately exits. To set it up to work you must
create appropriate data and configuration files in the “etc/config” directory. If it finds the proper
files then it proceeds to set up the defined filter policy chains. You should read the documentation
at http://ebtables.sourceforge.net/. The version currently installed in the SnIP is 2.0.8-2 but may
vary by time of manufacture. Check our web site for updates.

Ebtables configuration rules are similar to iptables and involves “Adding” or Deleting filtering
instructions. A typical entry into the “ebtables” file for basic filtering from the examples page might
be:
ebtables -P FORWARD DROP
ebtables -A FORWARD -p IPv4 -j ACCEPT
ebtables -A FORWARD -p ARP -j ACCEPT
ebtables -A FORWARD -p LENGTH -j ACCEPT
ebtables -A FORWARD --log-level info --log-ip --log-prefix EBFW
ebtables -P INPUT DROP
ebtables -A INPUT -p IPv4 -j ACCEPT
ebtables -A INPUT -p ARP -j ACCEPT
ebtables -A INPUT -p LENGTH -j ACCEPT
ebtables -A INPUT --log-level info --log-ip --log-prefix EBFW
ebtables -P OUTPUT DROP
ebtables -A OUTPUT -p IPv4 -j ACCEPT
ebtables -A OUTPUT -p ARP -j ACCEPT
ebtables -A OUTPUT -p LENGTH -j ACCEPT
ebtables -A OUTPUT --log-level info --log-ip --log-arp --log-prefix EBFW
-j DROP

http://www.netfilter.org/
http://www.netfilter.org/

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-30

4.0 SnIP Software: U-Boot and Linux Operations

The SnIP card contains a flash memory chip that servers as non-volatile storage. It is not just the
equivalent of a disk drive. Instead it is logically divided into 4 segments each representing a
different function. The four partitions are U-Boot, Environment, Kernel and JFFS2.

! The U-Boot partition contains the boot-loader.
! The Environment partition contains the boot loaders stored environment variables plus a

serial number and the SnIP’s MAC address.
! The Kernel partition contains the Linux kernel, compressed.
! The JFFS contains a compressed Journaling Flash File System, which is the equivalent

of the hard drive in a standard computer.

The SnIP875 ships with Linux version 2.6.15 or later depending on the date of manufacture.
There are many standard Linux defaults, directories (folders) configuration methods and
operating procedures that, although familiar to Linux administrators may not be familiar to the
more casual user. Below are some of those procedures and methods. Note that unlike Windows
the directory separator is a forward slash “/” not the back slash “\”.

The basic SnIP configuration contains only a single user – the “root” user who has all of the
privileges available on the Operating System or OS. Unlike some Linux implementations that
have a /home/username

4.1 Basic Linux Directory Structure

 /
/bin /boot /dev /etc /home /lib /mnt /proc /root /sbin /tmp /usr /var

! /bin and /sbin directories – contains basic root accessible commands and utilities.

! /usr/bin and /usr/sbin directories – contains basic user accessible commands and utilities.
There may also be application libraries in these directories.

! /dev directory contains the system device special files.

! /etc and its subdirectories contains system and application configuration files.

o /etc/init.d directory contains initialization scripts.

o /etc/profile.d directory contains automatic user scripts.

! /home and its subdirectories contain the home directories for non-root users added to the
system.

! /lib and its subdirectories contains system and application library files plus kernel
modules.

! /mnt and its subdirectories contains other devices mounted in the filesystems.

! /proc contains information on currently running processes.

! /root is the root user home directory.

! /tmp is a container for non-persistent files not written to flash.

! /var and its subdirectories contains main application programs like appWeb, with their
associated libraries.

Each of these directories may have other sub-directories. Most of the common Linux commands
are located in for directories: /bin, /sbin, /usr/bin and /usr/sbin. The SnIP’s web site is located in
the /var/appWeb/web directory.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-31

Virtually all of the startup and configuration files are located in the /etc directory, including the
startup scripts for networking, bridging and routing. The /etc/config directory holds most of the
operating configuration files.

The /tmp file is unique because it is created and mounted strictly in the SnIP’s operating RAM
memory. When the SnIP is rebooted, or powered down, all of the information and files in this
directory are lost. This is a valuable resource used for log files, and as a temporary holding
location when updating either the kernel image or the bootloader.

Linux is implemented as two main elements: Linux itself which is a compressed file expanded and
started by the bootloader, and a “Root Filesystem” which in this implementation is a Journaling
Flash File System Version 2 (JFFS2). These two elements are stored in two different partitions of
the flash memory.

The Linux OS allows commands to operate on the files in these directories and applications that
perform specific functions.

4.2 Secure Copy Procedure (scp) –
Requires:

! Operating SnIP with a known IP address
! Host Computer with the files to be copied to the SnIP (scp is part of the Linux SSH suite).

For Widows computers there is an scp host application named WinSCP3 which
implements parts of the SSH suite including the scp protocol. There is also a command
line application as part of the PuTTY Windows application named “pscp.exe”.

Procedure:

The basic command is “scp sourceFile destinationFile”. The more explicit directions below
show its use from either a host computer or the SnIP. Unlike the tftp protocol, the access on the
host computer is not limited to a fixed tftp directory.

Scp always asks for the password for the user at the destination location. If multiple files are
transferred in one transaction then the password is only required once. If a script is used to
transfer multiple files separately then the password is requested on each transfer.

A. From a Host Computer to copy to a SnIP:

On the host computer navigate to the directory containing the file(s) to be copied. The files could
be new or updated versions of existing files. You also must know the proper directory where
these files belong on the SnIP. For example a user created test program might reside in /usr/bin
while a script to be executed by the root would be directly in the /root directory. The ip address
used is that of the SnIP.

scp directory/file root@ipaddress:directory

For example: “scp bridge-test root@192.168.100.82:/root” which might be copying a user bash
script into the /root directory.

Another example – “scp myprogram root@192.168.1.82:/usr/bin”

And to copy from the SnIP to the host computer an example command might be:

scp root@192.168.1.82:/etc/hosts.allow hosts.allow

In each case the SnIP will ask for the SnIP’s root password before allowing the copy to proceed.
On the first transfer by this method to a SnIP from a particular computer you will also be asked for
confirmation to add the SnIP and its RSA certificate to your list of known secure addresses.

If you later reload the Linux software into the SnIP and it generates new RSA certificates then you
may not be allowed to secure copy from a computer. You may have to remove the SnIP with that

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-32

IP address from the “home/name/.ssh/known_hosts” (Linux name) file and re-initiate the
certification with a new secure copy.

A1. SCP from a Windows Computer using PuTTY – pscp.exe

The Windows based Putty Progam contains many useful features. One of those is a program
named pscp.exe is normally installed in the “C:\Program Files\PuTTY” folder when installing
PuTTY. To use it in the above first example there are two added concerns. First the directory is
not part of the normal Windows Path, and second Windows uses the backslash to separate
directories. So the full command to copy the file named “myprogram” from the present working
directory would be:

C:\”program files”\putty\pscp myprogram root@192.168.1.82:/usr/bin

The pscp.exe program apparently needs no installation and could therefore be dropped into any
directory already in the Path and the commands would then be almost identical to those on the
Linux computer – don’t forget the backslash on the Windows end though.

B. From a SnIP Terminal to copy from a Host Computer:

This procedure is essentially the reverse of the above. From the SnIP console or Telnet/SSH
session you would use the following command to copy a file from any directory on the host to any
directory on the SnIP. The ip address used is that of the host.

scp user@ipaddress:directory directory/file

For example to copy the file test1 from mike’s home directory named “mike” the command might
be:

scp mike@192.168.1.101:/home/mike/test1 test1

The protocol will ask for the user’s password to access the computer and files. The first time this
is accomplished the secure protocol will also create a file of known hosts in the SnIP so that this
host and its key will be remembered. The password is always required though.

4.3 File Transfer Protocol (FTP) (Using wget instead)
The “ftp” server or client is not normally implemented on the SnIP. This is partially for security
reasons, and the preferred procedure is “scp” for secure copy. The powerful Linux “wget”
command however is available and is capable of retrieving files from web “HTTP” or “FTP”
resources. Although not essential, normally DNS server connections are needed to properly use
wget. See Section 8.25 on specifying a DNS server later. Suppose that you wanted to retrieve a
file from the http web site named www.datum-direct.com and the file was a new “mdm-find”
located in the download directory. The command to get this file and put it into the local /tmp
directory to test it would be”

wget –P /tmp “http://www.datum-direct.com/download/mdm-find”

The “–P” option tells wget where to put the file that it is downloading from the shown URL. Note
the quotation marks around the URL which although not necessary here help protect URL names
that may have spaces included.

Now assume that you wanted to get the same file from an FTP server at the same base web
location, but with the address “ftp://snip875.datum-direct.com” and in the directory “/updates/root”.
Further consider that this is a password protected site and your user name is “vtcorp” and your
password is “dogdays”. So now the command is:

 wget –P /tmp “ftp://vtcorp:dogdays@snip875.datum-direct.com/updates/root/mdm-find”

There is a lot of info here, but it breaks down to get from the web, putting into my absolute /tmp
directory from user “vtcorp” with password “dogdays” at the ftp site “snip875.datum-direct.com”
the file “/updates/root/mdm-find”. You could test the file and if satisfied copy it to the directory of
your choice.

http://www.datum-direct.com/

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-33

4.4 Trivial File Transfer Protocol – (tftp)
TFTP is not a secure protocol!

The TFTP client is implemented in BusyBox on the SnIP. To use TFTP to transfer a file between
a host computer and the SnIP the procedure varies slightly by which end you are operating from
and what direction the transfer is to occur. TFTP requires that a host computer be set up with the
TFTP server installed and running. TFTP also requires a standard directory on the host (named
“/tftpboot” on Linux computers). All file transfers occur to and from this directory

From the SnIP console or Telnet session the user command to get a file from the tftp server is:

tftp –g –l local-filename hostaddress –r remote-filename

For example a user would type the following to copy the file named “test1” from the /tftpboot
directory on the host to the present working directory on the SnIP.

tftp –g 192.168.1.101 –r test1

In that example we skipped the local filename because it was the same. But if, for example, the
remote was in a subdirectory of the tftpboot directory then specifying the local filename is
required. For example if a new kernel image was in the server directory /tftpboot/snip6 and you
had changed to the SnIP’s /tmp directory and wanted to download the new image the command
would be:

tftp –g –l uImage 192.168.1.101 –r snip6/uImage

tftp is also fairly lenient about the order of the options and they are somewhat arbitrarily placed
here.

The procedure to put a file from the SnIP to a host is the same as the above example except that
the “-g” is replaced by “-p” for put. This direction would be rarely used since it is not required
normally and tftp servers are often configured to be read only.

4.5 Telnet
Telnet mode requires that a previously setup IP address is already configured.

The Telnet Mode allows all of the control of the local console connection except from any
computer that can address this SnIP’s IP address. When the bridge mode is enabled the bridge
takes over the Ethernet port’s IP address, allowing telnet sessions to be set up. The Telnet
session can also be established from either the LAN or Satellite port sides of a link.

When a usable IP address is assigned the telnet connection can be made from a Windows
machine using a DOS Command prompt window or from a shell terminal window in Linux. The
command is the same for either – “telnet [ip address]. For example if the IP address is set to
192.168.150.210 then the command is:

telnet 192.168.150.210
The SnIP should respond with:

[Hostname] Login:
Password:
 The default Login is ‘”root”, and the default password is “datum” .

If the password is changed it is the responsibility of the administrator to keep track of passwords.
The password can be reset from the Terminal mode with connection to the DB9 “Console”
connector.

With some Windows browser versions the invocation of the URL address of:

telnet://192.168.1.120/

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-34

will automatically launch the “Hyperterminal” communications program that is part of many
Windows installations. The Hyperterminal display will mirror that of the DOS command prompt
window.

Multiple user “sessions” are possible simultaneously. Part of the telnet command prompt tells
which virtual terminal is connected.

When the telnet session is no longer needed the user can sign off using the command “exit”. The
SnIP will then close the connection.

4.6 Local Console Control

When shipped from the factory the SnIP is a bridging application set up to operate with all ports
and traffic directions enabled. The SnIP is highly configurable and is mainly controlled via the
local Console connection on the rear panel of the modem. Use a 1:1 male to female cable to
connect this port to a standard PC Com port. You can then use Hyperterminal, gtkTerm (Linux) or
some other VT100 or ANSI terminal emulation program to manage the SnIP. The default
communications settings are 38400,N,8,1.

This port will ask for a standard Linux login before you can gain access to any control functions.
The default login user is “root” and the default password is ‘datum”. Once logged in you have full
access to the Linux operating system and all of its programs.

Some useful programs are the standard Linux “route” command, which can show or modify the
static routing currently in use, “configwiz” which allows setting up the basic SnIP configuration
and all of the other Linux commands. Those can be seen by using “ls” on the /bin, /sbin, /usr/bin
and /usr/sbin directories. Configuration information is normally kept in the /etc directory.

The configuration files and scripts, which control the Snip, can be modified using either the
common vi, or the more advanced “nano” editors. Either will require entering the following
environment variable for Hyperterminal. It is also required on a Linux computer when using the
virtual terminals from Telnet or SSH.

export TERM=vt100
This will probably be modified in the future to make the vt100 terminal the default.

The nano editor is a full screen simulated editor on a terminal, and is fairly competent. The basic
commands are “nano filename” to load a file for editing, “^o” (Control key and the letter “o”) to
save the modified file, and “^x” to quit or exit nano.

4.7 Disaster Recovery

Linux is extremely powerful, and it is not uncommon to operate as the root user within the SnIP
which will also allows you to make some creative mistakes. Some may be fairly easily
recoverable though.

If you have set up routing rules or iptables rules that no longer permit you to access the modem
via telnet, it might be possible to recover using the modem front panel. A special non-valid
network mask consisting of “000.a.b.c” where a.b.c can be the previous setting, is used as a
trigger to tell the SnIP on start-up to not load the “static-routes” or “iptables” rules, thus permitting
access again via telnet or ssh. When you enter a new IP address or Network Mask on the
modem’s front panel the SnIP reads the new values and enters a reboot cycle, allowing this
trigger to work on the resulting startup. The SnIP reads this non-valid mask and restores it to
255.255.255.0 for setup, but retains the value in the system config file.

Some types of setups, especially those using custom applications, may result in a lock-up not
allowing either telnet or console access. A special mechanism can be used to hellp prevent this if

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-35

the application is designed to recognize it. By stopping the boot-up procedure while still in the
boot-loader (use the “qt” special keys) and then changing the bootargs environment variable to
add the variable “rescue=yes”, special actions can be accomplished in the Linux at startup. The
sequence is:

1. Stop the bootloader with “qt” when prompted.
2. Type “setenv bootargs root=1F03 rw rescue=yes rootfstype=jffs2”
3. Type “bootm fe060000”

Linux should now boot and disable the offending application if previously set up to do that. You
have to put your rescue procedure in the script file named “/etc/init.d/rescue” before this will work.

You may also be able to recover some types of errors by reloading them using the procedures
outlined below in Section 5. As a last resort, you may need to reload a new kernel and Root
Filesystem using the bootloader as outlined in Section 10.1. That will result in returning the SnIP
to its factory condition.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-36

5.0 New Software Load or Upgrade

The SnIP is very similar to a standard PC type computer running Linux, but without the video
output and graphical interface. The hard disk is replaced by 16 MegaBytes of solid state NOR
flash memory, which appears to Linux as a “Memory Technology Device” or MTD. Normally the
MTD does not have to be “mounted” as standard Linux hard disk drives do. The flash is
separated into 4 partitions similar to partitions on a hard disk containing the following information:

! mtd0 – 256 kBytes – “U-Boot” (the bootloader)
! mtd1 – 128 kBytes – “Environment” (U-Boot’s environment variables)
! mtd2 – 1.2 MBytes – “Kernel” (The Linux Kernel)
! mtd3 – 14 MBytes – “Linux Root Filesystem” (JFFS2 format)

Note that each has a name “mtdn” where n is the partition number starting at 0. The basic flash
segments are 128 kBytes which is the minimum element that can be erased and written in the
flash memory. The actual devices are located in the /dev directory and fully named “/dev/mtdn”.

U-Boot and the Linux Kernel are images that can be rewritten or updated from either U-Boot or
Linux. Updating files and programs in the filesystem are accomplished by overwriting with new
files or programs similar to the procedures in Linux or Windows.

Background Aside:
In the factory when nothing is loaded into the flash at all a special JTAG/BDM hardware
and loading procedure must be used to load the boot loader (U-Boot) itself and then U-
Boot is used to tftp and burn into flash the Linux Kernel and the raw Root Filesystem.

Normally the bootloader does not have to be updated. The following procedures show methods to
update the Linux kernel or individual programs in the Root Filesystem. For an alternate method to
reload the entire Linux Kernel and the Root Filesystem see Section 10.1.1.

5.1 Updating the Linux Kernel
The basic procedure is to download a new kernel image into the /tmp directory and copy that
image into the proper mtd partition. Either ‘scp’ or ‘tftp’ can be used to download the new image,
and a special mtd program named “flashcp”, is used to erase the current kernel and write the new
one into the partition.

We download the new kernel image, named “uImage”, to the “/tmp” directory. Since this directory
is not written to flash itself we will not clutter the file system.

To use tftp you must have previously set up a tftp server with the new image located in the
server’s default tftp directory. The command to execute on the SnIP is:

cd /tmp
tftp –g –l uImage 192.168.1.101 –r uImage
flashcp –v uImage /dev/mtd2

In the above tftp command you must change the IP address to that of your tftp server. If the flash
partition had been locked previously then you might get the response

While erasing blocks xxxxxx on /dev/mtd2: Read Only Filesystem
You should then issue the command:

flash_unlock /dev/mtd2

And retry the flashcp command.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-37

The tftp command requires that a tftp server had been previously set up on the LAN. Without this
it is possible to use the “scp” (secure copy) procedure to transfer the new image to the SnIP. To
use scp you must have previously set up a working scp link between either a Linux PC or a
Windows PC running a program like “WinSCP”. with the new image located in a known location in
that PC.

The command to execute on the PC is:

scp uImage root@192.168.1.82:/tmp

The IP address in the above command must be changed to that of the SnIP card.

The command to execute on the SnIP is:

cd /tmp
flashcp –v uImage /dev/mtd2

The “-v” otion is used to show progress. After either of the above procedures the SnIP must be
rebooted for the new kernel to become effective. If you reboot from a Telnet session you will have
to re-establish the session after the reboot is complete. Rebooting also clears the /tmp directory,
eliminating the temporary image file used to burn the new image into its flash partition.

5.2 Updating the Bootloader
The same basic procedure outlined above for updating the kernel can be used by substituting the
bootloader image name, “u-boot.bin” and the proper mtd partition, mtd0. Thus after downloading
the u-boot.bin file to the /tmp directory the command would be:

flashcp –v u-boot.bin /dev/mtd0

The new bootloader will not be used until the next time the SnIP is powered on or re-booted.
Rebooting also clears the /tmp directory, eliminating the temporary image file used to burn the
new image into its flash partition. If you are not rebooting immediately you can recover the space
in the /tmp directory by deleting the image file from it.

5.3 Updating Individual Files and Applications

5.3.1 Using SCP between a Linux Computer and the SnIP
The procedure is to simply use scp or tftp to download the new file to the proper location in the
SnIP’s directory structure, where it will overwrite the existing file. For example if a newer version
of the m49ctl program were available then by using the scp command from the SnIP command
line, either at the console or a telnet session, the new file will overwrite the existing one.

scp mike@192.168.1.101:/home/mike/ m49ctl /usr/bin/m49ctl

Where the first parameter is the host computer that contains the new file and the second is the
location and file name of the new file. This example copies the file from a Linux computer with an
IP address of 192.168.1.101 and the user named “mike”.

Or from the Linux computer end at a terminal session to download the new program into the SnIP
the command would be:

scp m49ctl root@192.168.1.82:/usr/bin

It is important that after transferring a program by either method the properties of an executable
file should be checked to insure that it can be executed. Use “chmod” if necessary to set the
properties to something like “755”.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-38

5.3.2 Using Win SCP between a Windows Computer and the SnIP
WinSCP is a very capable program that runs on various versions of Windows and provides a
graphical method of transferring files between a Windows based computer and the SnIP. The
procedure is generally performed as follows:

Preparation - First you must download the open source (free) WinSCP program and install it
onto a Windows computer. This program is also included on the CD that came with the modem.
The program must be installed on a computer that can share the same LAN as the SnIP. The
WinSCP web site where the program can be downloaded: http://winscp.net/eng/index.php also
has flags at the top representing different language versions.

First Use – When you first start WinSCP or when connecting to a new SnIP there are several
initial steps required. Note that these may change with newer versions of WinSCP.

! At the main screen press the “New” button to create a new session.

! In the Host name box enter the IP address of the SnIP, for example. 192.168.15.91.
! In the User name box enter “root”.
! In the Password box enter “datum” or your own password if you changed it.
! In the Protocol area either use SFTP with the Allow SCP fallback checked, or SCP.
! The “Private key file” is for a special purpose and can be ignored.
! You can save the session parameters now or later, giving it a unique name.

Press the “Login” button to start the login procedure. The first time the secure keys are
determined you will be asked if you wish to continue and save the secure keys into the cache.
Answer Yes.

http://winscp.net/eng/index.php

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-39

Logging In – Each time you log in you will probably get an error message about looking up user
groups. Click OK to bypass this message which does not apply to the SnIP implementation.

WinSCP will take a few moments to read the files locally and in the SnIP and display a screen
similar to the following

In this window you will see the local computer’s “My Documents” folder on the left and the SnIP’s
“/root” folder on the right pane (this is the root user which is where you logged in). Navigate in the

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-40

local computer pane to get to the location of the new file you wish to update or install in the SnIP.
Navigate in the SnIP pane to the location where the file will be inserted. In the picture below we
are ready to copy the file “m5ctl” from the local computer to the “/usr/bin” directory in the SnIP.

The local computer’s file pane is on the left and the SnIP pane is on the right. To transfer a file
from the local computer to the SnIP you would select the location and file from the local computer
pane and select the proper directory in the SnIP for the file to be placed.

You can copy a single or multiple marked files using the “Files – Copy” command or simply drag
and drop individual files from one pane to the other. There are multiple other commands available
in WinSCP that can be investigated using the documentation.

WinSCP will even allow you to change the user permissions or rights for a file in the SnIP by right
clicking on the file and selecting “Properties”.

5.3.2.1 Updating and Synchronizing an Entire Directory
The SnIP includes the Linux program “rsync” and a Linux PC can be used to synchronize
directories between the two computers. The same functionality is possible with WinSCP in a
graphical environment and it is fairly easy to accomplish. Caution must be taken however as any
of these types of facilities can radically alter the SnIP’s file structure. As an example of
accomplishing this we illustrate how to update the entire SnIP Web Interface from a directory
structure on a Windows PC.

After starting WinSCP as shown above navigate the Window’s pane to the downloaded and
unzipped (uncompressed) web directory. Extracting using a compressed image maintains the
date of the files. If they are copied directly from another location the file times will become the
date of copying which will not work correctly in updating using WinSCP.In the picture below notice
that we have also navigated on the SnIP pane (right) to the /var/appWeb/web directory where the
web pages are located.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-41

Next we will use the WinSCP Synchronize facility. The tool tip for this button with two blue arrows
in a circle says “synchronize local directory with remote directory (ctrl S)”. This is shown as the
icon 6 from the left in the picture above. We actually want to synchronize the remote with the local
directory and that is one of the options provided. Push this button on the toolbar and a new
window will pop up as shown below.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-42

You should first select the radio button to select the target directory as “Remote”, then select the
options “Delete Files”, “Preview Changes” and “Modification Time” comparison. If the date and
time are not correct in the Windows PC then it is also possible to match based on “File Size” but it
may not correctly catch all changes. The “Synchronize files” mode is selected by default.

Caution! In this example we are using the “Delete files” option. This will delete files on
the target SnIP directory that do not exist in your host computer directory. This option
should only be used when comparing and synchronizing complete file structures.

When you click the “OK” button the following type of preview window will be displayed showing a
list of the files with selection checkboxes. This illustration happens to be from a different directory
but shows the files, checkboxes, what has changed, and what direction the files are going. This
preview allows you to modify the selections if needed. When ready click the “OK” button and the
file transfers will occur.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-43

That SnIP directory and its subdirectories should now be up to date.

When finished use the “F10” Quit option to close the session.

5.3.3 Using RSYNC between a Linux Computers and SnIPs
Rsync is a sophisticated file and directory synchronization tool used within or between Linux
computers. For example a complete web site can be developed on a Linux PC computer in a
directory, for example /home/mike/webs/snip, and then used to update the SnIP web pages as
needed. The command on the Linux PC would be:

 rsync –avz --delete /home/mike/webs/snip/ root@192.168.15.83:/var/appWeb/web

This command will take the local web directory and add and delete files as necessary on the SnIP
to make the two directories match. It will even delete sub-directories as needed.

Rsync can also be used to synchronize files and directories between two SnIPs. The commands
are slightly modified because the SnIP’s equivalent of the ssh protocol used for transfer is named
“dropbear” and it does not have the same option parameters. To correct that a different dropbear
interface is called named “dbclient”. Here is an example command to synchronize the web from
one SnIP to another – the target is at IP address 192.168.15.91.

 rsync –avz --delete –e dbclient /var/appWeb/web / root@192.168.15.91:/var/appWeb/web

Notice in both of these examples that the source directory has a trailing “/” while the destination
does not. Read the rsync documentation at http://samba.anu.edu.au/rsync/

http://samba.anu.edu.au/rsync/

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-44

5.3.4 Using “ipkg” to install and update packages in the SnIP from the web
“ipkg” is a small platform version of a Linux package manager like rpm or apt. ipkg has a number
of commands used to maintain a database of currently loaded optional applications and those in
a repository. Datum Systems maintains a web repository at a special subdomain of datum-
direct.com.

A good web location to see an ipkg tutorial is http://www.dd-wrt.com/wiki/index.php/Ipkg Some of
the basic commands are:

ipkg update # pulls latest list of package listing from the default sites.
 ipkg list # gives the list of ipkg's available
 ipkg -d <location> install <packagename> # installs the package of your choice

Currently there are very few optional packages for the SnIP since all normal programs are
already within the standard root filesystem. More may be added in the future.

The basic configuration for ipkg is in the “/etc/ipkg.conf” file. This file contains the web address of
the Datum Systems site which maintains its package repository. It is also possible to set up a
local repository of optional packages. The address of that repository would need to be added to
the configuration file.

http://www.dd-wrt.com/wiki/index.php/Ipkg

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-45

6.0 SnIP Monitor and Control Applications

The SnIP has two monitor and control channels to the modem’s main processor that are
independent of its use as a data interface. These are an internal RS-232 control port and the
external RS-485 port, which can be connected to the host modem or any other co-located
modems. The SnIP’s management ports can be used for M&C functions with or without being
selected as the modems data interface.

There are two main applications for M&C built into the SnIP. The first is named “m49ctl” or
“m500ctl” and is a command line application intended for either local console control or Ethernet
control via Telnet or SSH. The second is the SnIP’s built in web server with its browser based
GUI for modem control.

6.1 m49ctl and m500ctl Applications
These are Linux command line applications that accept easy to remember mnemonics for monitor
and control. The programs convert the input commands into binary packet messages between
itself and the modem, taking the modem response and formatting it into a man or machine
readable form. The human readable or “verbose” result is directly usable at the console or via
telnet or SSH from anywhere accessible to the Ethernet interface.

The “m49ctl” is intended for the M5 series of PSM-4900 modems and uses its binary packet
protocol while the “m500ctl” program is for use with M500 series of PSM-500 modems. Since the
M500 series has M5 compatible commands, the m49ctl program could potentially be used with
either modem type within the limitations of the M5 capabilities.

Use of these applications remotely requires that a SnIP IP address has been set, and that a
remote console is first logged into. The applications are called from the console or telnet terminal
command line.

Either of these programs uses a 2 to 5 letter mnemonic representing the command and a value
as either a “?” for query or a numeric entry to send that value with the command. The command –
value are always represented by a pair of entries separated by a space. The mnemonic entries
mirror the convention used on the front panel in most cases. The first letter is the first letter of the
4 areas available, either “u”, “m”, “d”, “i” standing for Unit, Mod, Demod or Interface. The second
letter represents the packet (which coincides with the column on the front panel display, e.g. “d”
or Data or “i” for IF or “t” for Test) and the third is the parameter. For example the modulator IF
frequency is represented by the letters “mif”, while the entire modulator IF packet is “mi”. Staying
with this example, to show the mod IF frequency you would type:
 m500ctl 1 mif ?
And the modem might respond with

 75125000
representing 75.125 MHz.

The “1” after the command mnemonic is the address of the unit to be read or controlled. The
address “0” is used for the internal connection to the modem hosting the SnIP card. Any other
address is directed out the rear panel DB9 connector on the RS-485 bus. Multiple modems can
be connected to this RS-485 bus as long as they all have unique addresses between 1 and 253.

Note also that all input to the programs are lower case.

If you wished to have a more easily readable response you could use one of the available
switches, “-v”, to tell the program to provide a verbose output.

 m500ctl –v 1 mif ?
And the modem might respond with

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-46

 Modulator IF Freq = 75.125000 MHz

To set the demodulator IF frequency you would replace the “?” with the desired frequency in 1 Hz
increments. Therefore to set it to 67.052 MHz, the command would be:

 m500ctl 1 dif 67052000

Most commands either have values as above or selections. The selections and numbers used to
set them are the same as those used on the front panel. So, to enable any “on/off” parameter,
you would use “0” for disable or set off, and “1” to enable or set on. Values for selections can be
found in the modem’s Appendix B – Remote Control Protocol. They are also the same values as
those used on the front panel.

One difference to note is that the current implementation of the m49 and m500ctl programs use
the full value input down to the lowest increment possible. Thus in the above example you could
not enter “67”, “67.025” or any value other than “67052000” which carries the value down to the
Hertz. The single exception is in L-Band modems where the BUC and LNB LO frequencies are
entered in MHz values with no decimal points. No known BUCs or LNBs use sub MHz increments
today.

You can also have multiple commands on a single command line. To see all of the Modulator and
Demodulator IF and Data Settings and to set the Modulator IF output on, you would use the
command line:

 m500ctl 1 mi ? di ? md ? dd ? mie 1

Available switches are “–v” for “verbose”, “-r” for raw mode output and “–sp” for “show packet”,
which is used for debugging to see the actual commands sent and received between the SnIP
and the modem. There is also a Time output for the status commands only in verbose mode
using the “-t” switch. To see the currently available mnemonics us the command “m500ctl –c”.

The order of switches are important. They should be used in the order: -sp, -v or r or x, -t.

6.1.1 Special Outputs – Raw Status and Status Elements
There are a few special cases to note in the commands and responses and how they can be
used:

6.1.1.1 Raw and Verbose Outputs
The default output format for two letter commands, or any command that results in multiple
response items is verbose. To force these outputs to a raw data format that would be machine
readable, use the “-r” switch. In this mode each output parameter is separated by a carriage
return. Then a language like Perl, which the SnIP includes, can directly import the information into
a standard array.

6.1.1.2 Status Outputs
The 4 status commands, us, ms, ds and is contain information useful for multiple applications, for
example when polling. The raw and verbose outputs of these commands have 3 elements at the
beginning of the responses:

! Events
! Alarms
! Tests

In addition the verbose outputs of these four commands can optionally display the current time
before the Events output by adding the “-t” switch. The time is in seconds since January 1, 1970
(GMT) which is the default date on power up without an rdate change (this date has something to
do with Linux). In 2007 that number is approx 1,169 Million. The “–t” switch is used before the

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-47

address and after the “–v” switch if used. Raw outputs assume a computer with its own time is
used to read the data, and adding a variable may modify array settings.

The Event flags are one time read flags and indicate if a change has occurred in this parameter
since the last read. The read is therefore destructive, resetting the flag to 0. The Alarm and
current Test flags are live, indicating the current status.

The verbose outputs group these with labels, and indicate only those currently active. The raw
outputs have 3 numbers as the first 3 returned scalar values which contain bit variables for the
individual status elements as shown below.

Unit Status Raw Output Events - Integer Scalar Value 0

Bit 0 – Modem
Bit 1 – Reference
Bit 2 – Redundancy Switch
Bit 3 – Name
Bit 4 – Test

Modulator Status Raw Output Events - Integer Scalar Value 0

Bit 0 – Carrier
Bit 1 – Data
Bit 2 – Bit Clock
Bit 3 – Test

Demodulator Status Raw Output Events - Integer Scalar Value 0

Bit 0 – Carrier Lock
Bit 1 – Eb/No
Bit 2 – Carrier Level
Bit 3 – Carrier Offset

Interface Status Raw Output Events – Integer Scalar Value 0

Bit 0 – IO Mode
Bit 1 – RTS
Bit 2 – CTS
Bit 3 – DCD
Bit 4 – DTR
Bit 5 – DSR
Bit 6 – Test
Bit 7 – BER Test

To determine the status of any one bit you simply “AND” the value with the appropriate bit value.
An example use of the Event flags would be to determine if any reads were necessary. First read
the unit status and if the first value is 0 then nothing has changed since the last read. But, if the
value were 1 then that would mean that the modem had a value change. You would then read the
mod and demod status to see what changed. If the mod status event value was 0 and the demod
event value was 1 then the demod carrier lock had changed. Reading further within the demod
status would show if the carrier was now locked or unlocked.

Unit Status Raw Output Alarms - Integer Scalar Value 1

Bit 0 – Mod
Bit 1 – Demod
Bit 2 – Reference
Bit 3 – Clock
Bit 4 – Redundancy
Bit 5 – No Backup (valid only in Redundancy)
Bit 6 – Backup in Alarm (valid only in Redundancy)
Bit 7 – Over Temperature

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-48

Bit 8 – Mod Hardware Failure
Bit 9 – Demod Hardware Failure
Bit 10 – FEC A
Bit 11 – FEC B
Bit 12 – Optional Interface Failure
Bit 13 – No Send Data Activity
Bit 14 – No Receive Data Activity

Modulator Status Raw Output Alarms - Integer Scalar Value 1

Bit 0 – Carrier
Bit 1 – Data
Bit 2 – AUPC at Limit
Bit 3 – AUPC Fail
Bit 4 – Data Timing
Bit 5 – No Data Activity
Bit 6 – Clock
Bit 7 – Output Level
Bit 8 – LO Alarm
Bit 9 – Synth Step Alarm
Bit 10 – System Alarm
Bit 11 – Reference Alarm
Bit 12 – OCXO Alarm (L-Band only)
Bit 13 – FEC Alarm

Demodulator Status Raw Output Alarms - Integer Scalar Value 1

Bit 0 – Eb/No
Bit 1 – AGC
Bit 2 – Data
Bit 3 – Level
Bit 4 – LO Alarm
Bit 5 – Synth Step Alarm
Bit 6 – System Alarm
Bit 7 – Reference Alarm
Bit 8 – Backward Alarm
Bit 9 – Buffer Slip

Interface Status Raw Output Alarms – Integer Scalar Value 1

Bit 0 – Interface
Bit 1 – Optional Interface Failure
Bit 2 – Optional Interface in Reset

The third standard variable returned to the raw status commands shows the current test modes
in process.

Unit Status Raw Output Tests - Integer Scalar Value 2

Bit 0 – Unit Test Active
Bit 1 – Mod Test Active
Bit 2 – Demod Test Active
Bit 3 – Interface Test Active

Modulator Status Raw Output Tests - Integer Scalar Value 2

Bit 0 – Pure Carrier Test Mode
Bit 1 – Alternate 1/0 Carrier Test Mode
Bit 2 – SideBand Carrier Test Mode

Demodulator Status Raw Output Tests - Integer Scalar Value 2

Bit 0 – IF Loop-Back Enabled

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-49

Bit 1 – Fixed Carrier Mode

Interface Status Raw Output Tests – Integer Scalar Value 2

Bit 0 – Terrestrial Loop-Back Enabled
Bit 1 – Satellite Loop-Back Enabled
Bit 2 – Modulator Pattern Generator Enabled (BER)
Bit 3 – Demodulator Pattern Generator Enabled (BER)
Bit 4 – Demodulator Pattern Generator Locked (BER)

6.1.2 A Unique m49ctl and m500ctl Case - Redundancy
There are no special connections required if the SnIP is used for control in a system where it is
not also used as the Data Interface except for one case. Occasionally however one may want to
use the SnIP for control where the synchronous serial interface is used in a redundant mode. A
modem with a SnIP installed will normally not allow enabling redundancy because the same
serial port is used both for redundancy communications between the modems and for SnIP
internal communications. If this is the desired connection then a special internal cable between
the SnIP and modem must be installed that removes both the serial port and the SnIP
identification lines. The modem then does not know that a SnIP is installed and it therefore is not
an available interface option. The SnIP to host modem communication must now be connected
via an external RS-485 cable.

6.1.2.1 Redundancy Control via “m49/m500ctl”
The m49ctl and m500ctl applications include redundancy control parameters, but are only usable
in this special case stated above. There are several redundancy control limitations, which are
stated in the main manual, and repeated here for reference.

! One unit of a redundant pair can send its full configuration to the other unit in the pair.
But, the “Send Configuration” command, “urc 1” can only be executed from the currently
On-Line unit. The configuration will be sent even if the Off-Line unit is in alarm.

! The command to switch to the redundant unit, “uss 1”, is essentially switch away from the
currently On-Line unit to the currently Off-Line unit. It can only be issued to the unit that in
currently On-Line. There is no effect to telling the Off-Line unit to switch. The switch will
also fail if the currently Off-Line unit is in alarm.

Other items that are not obvious is that the Unit Redundancy packet/command, “ur ?”, does not
contain the information of which unit is currently On-Line. That information comes from the Unit
Status request, “us ?”. Likewise the “urs” command does not control which unit is on-line, instead
it is a control for what results in a switch request, whether any alarm, Alarm A, Alarm B, etc. The
On/Off-Line status of a unit and the request to switch from a currently On-Line unit to its backup is
done from the Unit Status. Thus to switch, the command is “m500ctl 1 uss 1”. The “-v 1 uss ?”
verbose query returns not only the On/Off-Line status, but also the backup status if the unit is
currently On-Line and its own status as ready to go On-Line if currently Off-Line.

Unit address setting discipline is a great help in redundancy control. In order to know the address
of both units in a redundant pair it is strongly suggested that adjacent odd-even address pairs be
used. For example one pair would use the addresses 1 and 2, and the next pair would use 3 and
4. If Telnet control is being used the same type of numbering scheme might be used with the IP
address used to access the SnIP cards.

The M5 and M500 modem’s built in redundancy operates on a non-priority basis. That means that
there is no preference for which unit is On-Line if both are out of alarm and operating normally.

A proper sequence for bringing up a redundant pair might be as follows:

1. Set the Unit Address of the first unit of a pair to an odd number, e.g. 1. Then set the other
unit’s address to the next even number, e.g. 2.

2. Set each unit into 1:1 redundancy mode. “m500ctl 1 ure 1” and “m500ctl 2 ure 1”.
3. Set the unit parameters on the first unit for normal operation and insure that all alarms

are off. If the alternate is in alarm, this should place this unit On-Line.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-50

4. Insure that the first unit with the correct configuration settings is On-Line, if necessary, go
to the other unit and force it offline with the “uss 1” command.

5. Send the first unit’s configuration to the backup with the command “m500ctl 1 urc 1”.
6. The backup unit should now go out of alarm, and be ready for redundancy service.

6.1.3 m49ctl and m500ctl Command Set
The currently implemented m500ctl commands can be viewed by using the m500ctl program
itself and typing
 m500ctl -c
Which will result in a display similar to the one below.

The four columns here represent commands for the Unit, Mod, Demod and Interface, and as can
be seen each command begins with the first letter of one of these names.

Additional commands may be implemented in the future. Notice that the commands follow the
general format of the front panel controls in that they consist of 3 elements to define a particular
parameter. In the Excel worksheet idiom they are page, column and row, where page is either
Unit, Mod, Demod or Interface (the 4 buttons on the front panel labeled Unit, Mod, Dem, Intf). The
rows and columns are symbolic of the up/down and left/right front panel arrow controls. As
explained in the modem manual the scheme is synonymous with moving to a particular Excel
spreadsheet page, then cell row and column using a computer’s keyboard arrow keys.

Three of the commands, Mod Data FEC <mdfec>, Demod Data FEC <ddfec> and Interface Test
BER <itber>, are unique in that they require 3 parameters serparated by commas when changing.

[snip2:0 ~] m500ctl -c
M500 Modem Control Version 0.04
 Parameter to Command Letter Codes Reference
2 letter codes print verbose packet full info,
3-4 letter codes print/set individual parameters

 Unit Mod Demod Int
us - Status ms - Status ds - Status is - Status
uss - Red Switch mi - IF di - IF isbr - Reset BERT
 mif - Freq dif - Freq
 mio - Offset dia - Acq Range
 mil - Cxr Level io - Int IO
uc - Config mie - Cxr Enable iom - IO Mode
ucs - Store Cnfg mim - Modulation dim - Modulation
ucr - Recall Cnfg md - Data dd - Data ie - Ethernet
ucy1..8 - Delay mdr - Data Rate ddr - Data Rate iep - IP Address
 mdf - FEC Type ddf - FEC Type iem - MAC Address
uo - Ref Osc mdo - FEC Option ddo - FEC Option
ux - Remote mdc - Code Rate ddc - Code Rate
uxp - Protocol mdfec - FEC T,O,C ddfec - FEC T,O,C
uxt - Port Type mdrs - R-S Mode ddrs - R-S Mode
 mdrp - R-S n,k,d ddrp - R-S n,k,d
ur - Redundancy mds - Scrambler dds - DeScrambler
ure - Red Enable mdk - Clock Source ddk - Clock Source
urc - Send Config ddd - Buffer Delay
urs - Switch On ddb - Buffer Bits
urh - Hold Time mb - BUC dl - LNB
 mbf - BUC LO dlf - LNB LO
 mbe - BUC Pwr En dle - LNB Pwr En
 mbr - BUC 10MHz Ref dlr - LNB 10MHz Ref
ut - Test mt - Mod Test dt - Demod Test it - Test
uts - Self Test mtm - Test Cxr Mod dtl - IF Loopback itber-BER Tx,Rx,Dir

[snip2:0 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-51

Make certain that you do not have any spaces in the parameters. The FEC commands also have
commands to set the individual elements, but the 3 parameter version is recommended because
it avoids the possibility that one value is set but not allowed because of the others currently set.
The data FEC values can be read directly from the Modem FEC Modes document available on
the web or in the manual.

For the M500 there is additionally the mdmfr and ddmfr commands which set 5 related
parameters at once for complete data setup. They are the numeric selections for Modulation,
FEC Type, FEC Option, FEC Code Rate and Reed-Solomon (acronym MTOCR for short). For
example “m500ctl 0 mdmfr 11000” sets the modulator to QPSK, Viterbi, Standard Code rate ½
without R-S. This one command plus the IF frequency (mif/dif) and data rate (mdr/ddr) are all that
is normally required to set up a modem. The MTOCR can be entered as for example 32001 or
more properly 3,2,0,0,1.

The M5 modem controls available in the m49ctl program are very close to those shown above for
the m500ctl program. The main difference is that the M5 modem’s FEC controls are simpler than
those in the M500.

6.1.4 Other Control Manipulation
Since the SnIP is running Linux, this implementation has multiple other possibilities to manipulate
anything controllable from the command line, including the m49 and m500ctl programs. These
are the bash script and Perl. Both contain powerful processes for executing commands and using
the output. Indeed, the web server uses Perl to issue m500ctl commands. It then takes the
responses in raw mode and places them into variable arrays. Those arrays are handed off to
JavaScript arrays when a web page is created, allowing display of current values.

No attempt is made here to show how this is done.

6.2 Web Server Monitor and Control
The SnIP also runs a web server by default. The web server can be used to control the SnIP
itself, the SnIP Interface functions including bridging and routing and the host modem plus others
connected to the external RS-485 port.

The web interface is accessed at the IP Address that has been set for the modem.

7.0 The Web Server

The SnIP contains a full web server designed by appWeb. It allows creation of almost all normal
types of web pages including html, cgi, esp (unique to appWeb). It also includeds support for
Javascript, Perl, PHP (not implemented), CGI, etc. The basic SnIP contains a web site that allows
monitor and control of the SnIP, Linux and modem functions.

You can also write your own web site to be hosted by and run on the SnIP.

7.1 Basic Web Operations
The web site hosted by the SnIP can be accessed by using a standard browser and pointing the
URL to the SnIP’s IP addres. For example if the SnIP is configured with an IP address of
192.168.15.83 then to access this SnIP web you would type into the web browser address
“192.168.15.83” and press return.

By default the web server has two levels of security implemented, basic and ssl. The basic web
site is accessed as described above and a window will pop up requesting your user name and
password. The default for these is “root” and “datum” respectively unless you have changed
them. The URL address in the browser will show “http://192.168.15.83”.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-52

There is also an ssl implementation of the web site at “https://192.168.15.83”. This not only uses
the ssl protocols, but also uses an Authorization protocol named “Digest” by default. Digest
authorization will only be properly handled by Firefox and Internet Explorer version 7 browsers,
and not Internet Explorer version 5 or 6.

The authorization and other configuration options for the web server are controlled via the file
“/etc/appWeb/appWeb.conf” in the SnIP. Information on the options are available using Google
with “appWeb.conf”.

8.0 FAQ and HowTo Collection

In the style of Linux documentation we have a collection of frequently asked questions or FAQ
and also a “HowTo” for common tasks that many users desire. Remember also that the SnIP
uses the Linux operating system, and and there is a wealth of information available on the web to
help with programming, the command line and bash shell, Perl, conventions etc.

8.1 FAQ - Frequently Asked Questions
Following are brief answers to questions we have received:

Do I have to do anything special when starting or stopping the SnIP?
The SnIP was designed to be, and is very rugged, both in hardware and software. We have found
nothing to be cautious about or any special processes required when powering up or down the
SnIP. However, an unpowered PC connected to the console port may act like a keypress and
hold the SnIP in the bootloader on power-up. Also if some PC’s are left connected to the console
port when turned off, they can cause the bash console application to occupy 99% of the
processor’s time serviceing the dead port.

If the SnIP is not the selected interface, but it is in bridge or router mode, then a connected
Ethernet traffic will attempt to be sent to the modem data channel, which is turned off. This will
cause Linux to occupy about 99% of its time serviceing a soft interrupt. Both of these are not
apparent to the user, unless you view the current processes using the “top” command.

What is the difference between bridging and routing?
Bridging is an OSI model Layer 2 process that is intended to connect two segments of the same
LAN together having common IP addresses within the same LAN mask. The bridge function only
looks at MAC addresses. An example might be a branch office or a single computer separated
from the main LAN by a satellite link.
Routing is intended for use in a transmission system between two or more LANs with different
Addresses. It operates on the OSI Model Layer 3, working with IP Addresses.

What is the difference between static and dynamic routing?
Routing is intended for use in a transmission system between two or more LANs with different
Addresses. It operates on the OSI Model Layer 3, working with IP Addresses.

The SnIP has the multiple forms of router like protocols as follows:

! Brouter – special combination bridge and router using ebtables.
! Static router – The standard Linux Kernel implemented static routing tables that are fixed

and manually entered into the route table by hand or from the static-routes file.
! Mroute – the mrouted daemon is a multi-cast router.
! Dynamic “routed” router. This is the basic Linux kernel RIPv1 and 2 protocols.
! Dynamic Zebra and Quagga routers. These routers implement RIP, RIPNG and OSPF

protocols. It also emulates the operating format of a Cisco router.
Dynamic routers communicate with other routers and determine their routing tables semi-
automatically based on information sent back and forth between the routers.

https://192.168.15.83/

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-53

How long does the SnIP take to boot up?
The SnIP typically takes less than 30 second to boot, including starting the web server.

Why do I get a message on the console that says Netdev Timeout…?
Currently if the SnIP is enabled and the modem’s carrier is turned off then this message will
appear everytime the network protocols try to send a packet to the modem port. We will have the
ability to suppress these type messages in a future release or Tech Note. Linux reports this
message because the CTS signal goes down when the carrier is not enabled. The message can
be avoided by using the front panel or the web interface to force the CTS Active. If you do this
from the front panel you will have to first select a different interface such as RS-449, to make this
option visible.

Why do I get an error message on the console during boot up when Linux sets up
the HDLC channel that says “SIOCSIFFLAGS: No Such Device”…?
If the SnIP is not the currently selected interface by the modem, then Linux does not see the
interface as viable, and reports no such device. Hdlc0 does not appear in ifconfig unless the “-a”
option is used and then does not show it as “UP”. Selecting the SnIP interface should resolve the
issue.

Why do I get a message on the console that “Unable to connect to remote host
(address): No route to host?
By default the SnIP is set up to connect to a time server on the internet to get the current time.
Until both the IP address is properly set and a gateway to the internet is available, it cannot
connect with the time server. If you will not have any connection to the internet, the “rdate –s …”
line in the /etc/profile.d/baseconfig.sh file can be commented out to remove this from the boot
procedure. In software versions after 0.5.21 the rdate function is separate and controlled by the
“/etc/rdate.conf” file. Edit this file to control the time server used.

Ifconfig shows no IP Address for either eth0 or hdlc0
You are probably running in the bridge LinkMode. The bridge sets it constituent interfaces’ IP
Addresses to zero and takes on the address of the last interface added to the bridge.

After saving new ‘configwiz’ settings the console displays “iep (iem) change failed or
already set”.
The configwiz script attempts to change the modem’s setting for the IP Address (iep) and the IP
Mask (iem) if these are changed in configwiz. They may have been already set to the values that
were changed to.

When I ping a URL I get no or a bad response
This could have a number of causes. Some possibilities are:

! If you cannot ping even the local LAN at a known address then you have no connection
or your IP is not within the local mask.

! If you can ping the local LAN, but not the other end of the link then the bridging or routing
setup is not correct.

! If you can ping locally but not a static IP on the web, then you have no or a bad gateway
to the web.

! If you can ping a static address on the web, but not a named address, then you probably
have bad or no DNS server definitions.

Does the SnIP implement RIP or RIP2 routing protocol?
Yes – You must set up either the “routed” Linux router or the Zebra/Quagga routing configuration.

Does the SnIP have the PHP language installed?
Not at the present. PHP would occupy over 1 Mbyte of space which was not currently deemed
necessary. It does however contain a fairly complete implementation of Perl.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-54

Can I compile my own “C” programs to run on the SnIP?
Yes, but be forwarned that it is not a simple task for the novice. Even if you are familiar with
programming or using gcc on a PC, SnIP programs are both cross-compiled (for the Freescale
powerpc MPC875 processor) and are compiled against uClibc to conserve memory in an
embedded system. See the Resources at the end of this document to see how the cross-compiler
can be created.

Does the SnIP’s rear panel USB connector do anything?
Not yet.

Can I modify or create my own web site to be hosted by the SnIP?
Yes you can. The appWeb server is similar in functionality to the standard Apache web server.
The same rules apply to creating and maintaining a web site. The web is contained in the
“/var/appWeb/web” directory.

8.2 HowTo – Common Tasks
Following are short descriptions of how to accomplish common tasks on the SnIP. More detailed
information is available on the web for these and other tasks.

8.2.1 How To Use the “nano” Editor
The “nano” text editor is an easy to use full terminal screen editor that is probably more
comfortable for Windows users. If you already use and prefer the ‘‘vi” editor then the SnIP has
that capability too, and you should need no introduction.

The configuration files and scripts, which control the SnIP, can be modified using the “nano”
editor. Nano requires that the environment variable “TERM” be changed in advance from the
default vt102 to vt100. It is also required on a Linux computer when using the virtual terminals
from Telnet or SSH. Use the command:

export TERM=vt100
Currently the standard profile script /etc/profile.d/baseconfig.sh already issues this command. If
using nano via telnet from a Windows Hyperterminal session, insure that Hyperterminal
properties are set to VT100 also.

The nano editor is a full screen simulated editor on a terminal, and is fairly competent. The basic
commands are “nano filename” to load (or create) a file for editing, “^o” (Control key and the letter
“o”) to save the modified file, and “^x” to quit or exit nano.

8.2.2 How To Set the SnIP for your Time Zone
Your systems’ default Time Zone is set in the file “etc/TZ”, which is persistent and used on each
boot up. It should be modified with your particular Time Zone info. You can also change the
current Time Zone on the fly using the command”

export TZ=<time zone designation> for example export TZ=CAT+1 for Azores
The time zone designations have several formats but a common one is
 TZ=std, offset, dst
where “std” is the standard, like PST, MST, EST, BST, then “offset” is the offset in hours from
GMT and lastly “dst” is optionally used if the zone uses a form of daylight savings time. Here are
some common values to use either with the export command or persistently in the /etc/TZ file are:

! GMT Greenwich Mean Time
! PST8PDT Pacific Standard Time, offset of 8 hours and use Daylight Saving Time.
! PST+8PDT Same as line above.
! EST5EDT Like above but for Eastern Standard Time
! EET-2 European Eastern Time, offset of 2 hours (note entered as “-2”
! BST-6 Central Asia, note the “-“ again.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-55

! AET-10EADT Eastern Australia with Daylight Savings Time.

More are available by Googling on the web, and one site with more information is:

 http://souptonuts.sourceforge.net/how_to_linux_and_open_source.htm

You should note two items specifically. The offset is the negative of that shown on sites like this,
for example PST is 8 hours behind GMT or –8, but is entered into TZ as 8 or +8. The other is that
the TZ file must have a line feed at the end or it may not work correctly. It also appears that if you
just enter any 3 letter code only, the result is always GMT, that is you must at least also enter the
offset value.

8.2.3 How To Automatically Set the Date & Time with “rdate”
The SnIP does not have a battery backed real time clock and each time it is powered on the date
is reset to some value usually in 1970. You can manually set the date using the date command in
the format:

date MMddhhmm[yyyy][.ss]

Once set the SnIP keeps very accurate time for months. You read the date and time by simply
typing “date” at any console connection.

If the SnIP has been setup with internet access then the date and time can be automatically set
each time the SnIP is powered up. The rdate program requires the ip address of a time server
only to work. The command is

rdate –s <ipaddress>
rdate will then contact the specified time server, get the current date and time and set the SnIP’s
clock. A common US time server is 128.6.15.28. Another is 69.25.96.13, but you should find one
local to your area of operation. Root Filesystem versions prior to 0.5.22 used a very simple call to
the rdate function in the “/etc/profile.d/baseconfig.sh” script which would run for each login. From
filesystem 0.5.22 on a more complete sequence is used which calls the rdate function from the
inittab sequence. It looks for the time server IP address or URL in the “/etc/rdate.conf” file.

There is one other file that you will probably have to modify to get the correct time setting. That is
the “etc/TZ” file which contains a designation for the physical time zone you are located in. The
default stored in this file is for the Pacific Standard Time with Daylight Savings Time activated.
You should find the code for your area and edit this file with either that or the GMT designation if
desired.

8.2.4 How To Set Up Quagga to Run on the SnIP
As of this writing the version of Quagga installed on the SnIP is 98.6. This may change to a later
version when compiling is possible. It is very important to read the Quagga documentation at
www.http://quagga.net. Quagga consists of multiple modules, one for each protocol and one for
the zebra manager, plus an additional virtual tty shell named “vtysh”. These are also known as
daemons in Linux. Currently the /etc/init.d/network script starts up the components specified in
the file named “/etc/quagga/daemons” and connects it only to the internal loopback or “lo” port.
This default configuration allows access to the root user logged into either the console or a
telnet/ssh session via Ethernet.

To specifiy wihich router protocol daemons run on startup you edit the file named
“/etc/quagga/daemons”. This file contains one line for each protocol and a value setting of “yes”
or “no”. As an example setting if you wished to run the RIP protocol daemon you would edit this
file to set zebra=yes and ripd=yes and all other protocols =no. You must always set the zebra
daemon to yes if any other protocol is set to yes. Alternately set the zebra protocol and all others
to “no” to turn off all Quagga/zebra functions.

http://souptonuts.sourceforge.net/how_to_linux_and_open_source.htm
http://www.http://quagga.net

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-56

After selecting the desired routing protocols, each selected protocol should be edited in their
respective configuration file in the “/etc/quagga” directory. For example the RIP daemon protocol
configuration is contained in the “/etc/quagga/ripd.conf” file. Refere to the Quagga documentation
for details of how to set these files up. The configuration in these files can also be set from within
the vtysh or the individual protocol telnet sessions.

Once configured there are multiple ways to login to the Quagga sessions. Most if not all will work
either from the console or a telnet/ssh session.

! At a login prompt enter Quagga and the default password of zebra to enter the vtysh
shell.

! From within an existing session type “vtysh” to enter the vtysh shell.
! From within an existing session type “telnet 127.0.0.1 260x to enter one of the running

daemons.

8.2.5 How To Create New User Accounts on the SnIP
Refer to Section 1.0.9 at the beginning of this document.

8.2.6 How To Specify a Domain Name Server (DNS)
Many computers get their IP Address and pointer to a DNS from a gateway or DHCP server. With
a fixed IP Address you would need to supply a pointer to a DNS in order to resolve names to IP
Addresses. This is done by creating a file in the “/etc” directory named “resolv.conf”. The contents
of this file would be similar to the following which you could create with nano as follows:

[snip3:1 ~] nano /etc/resolv.conf (command to create file)
nameserver 205.166.226.38
nameserver 69.67.108.10
search localdomain

Of course the nameserver IP Addresses above need to be real ones for your system, which could
possibly be determined from a local computer on the LAN. If your local LAN computers are Linux
devices then you can see their settings by typing:

cat /etc/resolv.conf
If they are Windows computers you can check the Settings#Network and Dialiup#Local Area
Connection#Internet Protoco(TCP/IP) properties, but that probably says to get it automatically.
So then go to the Gateway or Router device that provides DHCP and use their procedure to find
the DNS addresses. Again these addresses would have been provided by the ISP.

The SnIP has a script in the /root directory that will create a default “/etc/resolv.conf” file. You will
however still have to edit the file created to place your own nameserver IP Address(es) inside. To
create the sample file from the root directory type:

./mk-resolv.sh
The “./” (dot-slash) before the script name is required because, unlike Windows, Linux does not
include the current home directory in the “Path”, so this notation tells Linux to get the named file
from the current directory.

The default DNS configuration file created by the script lists several public DNS Server address
that you may choose from if you do not have your own DNS servers from your ISP. To edit the file
for your particular use you can use the nano editor to comment out all but two addresses on lines
beginning with the keyword “nameserver” that are in your geographic area. To comment out a line
causing it to be ignored, place a hash symbol “#” as the first character on the line.

Using different server addresses from those on the other computers on the local LAN will still
work, but some operations seem to take longer when they are different, for example the “scp”
operations.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-57

More information is available in the “dns-readme.txt” file in the root directory. Information on
Public DNS Servers can also be obtained by Googling with that term. One site that shows what
appears to be relevant Public servers is:
 www.tech-faq.com/public-dns-servers/shtml
Several of the public addresses provided in the sample resolv.conf file that can be created came
from this site. It is still recommended to use the addresses provided by your ISP.

8.2.7 How To Do Almost Anything in Linux
This is not a Linux manual, but an incredible amount of information can be found on the web
using a search engine such as Google.

8.2.8 How To Recover the Default Configuration of a SnIP (Disaster?)
As the root user in Linux it is possible to seriously damage the files, configuration, scripts, etc.
Luckily it should not be easily possible to destroy the boot-loader that can be used to reload and
re-burn to flash the entire Linux kernel or the entire Root Filesystem.

If Linux still runs then the procedures in Section 5 of this manual may be usable. If not then
Contact Datum Systems to get a copy of the latest kernel and or Root Filesystem plus a special
script file which the bootloader can use to automatically load and burn to flash the whole Linux
system. You will need a TFTP server within your network, and have placed the script (named
“burna”) and the kernel and root filesysem images into the TFTP directory. Then follow the
directions given in Section 10.1 below.

http://www.tech-faq.com/public-dns-servers/shtml

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-58

9.0 SnIP – Basic Commands for Status and Administration
Linux contains several built-in test programs to check out a systems health and current status.
Below of few of these are shown which will allow you to determine if particular hardware and
software are working the way you intended.

9.1 Checking the Current SnIP Configuration
Use the command “config” to see the SnIP’s current persistent configuration.

9.2 Checking the Ethernet Connection – “mii-diag”
The “mii-diag” program checks the proper functioning of the Media Independent Interface or “MII”
that is part of the rear panel Ethernet connection. The program is called by simply typing “mii-
diag” at either a console or telnet/SSH session terminal. Typical results might be:

Notice above on line 4 that it shows that the negotiated setup is 100baseT and is Full Duplex.
This particular switch that the SnIP was connected to is actually capable of 1000baseT, but the
SnIP’s 10/100 interface MAC cannot tell that. Note also line 6 which tells you that everything is
working OK.

9.3 Checking the Interface Configuration – “ifconfig”
The “ifconfig” program displays and controls the different interfaces on the SnIP (or any Linux
computer). The program is called by simply typing “ifconfig” at either a console or telnet/SSH
session terminal. Control and selective display are possible by adding parameters after the
ifconfig on the invocation line. It is important to note that changes made using the ifconfig
command are local and not persistant and may conflict with setting in the persistent startup
configuration files and scripts.

There is also a quick program written by Datum Systems that will simply show the current IP
Addresses available to the kernel using the command “getip”.

Typical base results for a SnIP without a bridge running might be as follows:

[snip3:0 ~] mii-diag
Using the default interface 'eth0'.
Basic registers of MII PHY #0: 3100 782d 0013 78e2 05e1 c5e1 000f 2001.
 The autonegotiated capability is 01e0.
The autonegotiated media type is 100baseTx-FD.
 Basic mode control register 0x3100: Auto-negotiation enabled.
 You have link beat, and everything is working OK.
 Your link partner advertised c5e1: Flow-control 100baseTx-FD 100baseTx
10baseT-FD 10baseT, w/ 802.3X flow control.
 End of basic transceiver information.

[snip3:0 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-59

Notice that 3 interfaces are shown, the rear panel Ethernet interface named “eth0”, the internal
serial synchronous connection to the modem named “hdlc0” and the standard Linux local
loopbakc connection named “lo”. The third line of each shows that the interface is “UP” meaning
that it is currently enabled.

The “Hwaddr” shown for the eth0 and hdlc0 are the MAC addresses. The eth0 is a unique Datum
Systems owned MAC address, while the hdlc0 MAC address is automatically and randomly
generated by Linux.

When a bridge is currently created and operational, a 4th interface will appear as br0. The bridge
interface takes over eth0 and hdlc0 whose IP addresses are set to 0, while the bridge takes over
the normal IP address, MAC address and possibly the default gateway of eth0.

For control of the interfaces via ifconfig please refer to Linux documentation.

9.4 Checking the Current Route Status – “route” and “iproute”
The Linux “route” program displays and controls the different static routes on the SnIP (or any
Linux computer). The program is called by simply typing “route” at either a console or telnet/SSH
session terminal. Control and selective display are possible by adding parameters after the route
on the invocation line. The iproute2 version is “ip route” or “iproute” either with an optional
“show”. Typical base results of the route command for a SnIP without a bridge running might be
as follows:

[snip3:0 ~] ifconfig
eth0 Link encap:Ethernet HWaddr 00:19:78:00:00:06
 inet addr:192.168.15.83 Bcast:192.168.15.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:203 errors:0 dropped:0 overruns:0 frame:0
 TX packets:92 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:17867 (17.4 KiB) TX bytes:6698 (6.5 KiB)

hdlc0 Link encap:Ethernet HWaddr 00:01:2F:B1:82:7A
 inet addr:192.168.55.3 Bcast:14.255.255.255 Mask:255.0.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Base address:0x3f00

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:22 errors:0 dropped:0 overruns:0 frame:0
 TX packets:22 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:638 (638.0 B) TX bytes:638 (638.0 B)

[snip3:0 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-60

Notice the default gateway shown on the third line of the table. In this case it says that anything
with an unknown IP address will be sent to the gateway address. In this case the gateway is the
address of a DSL modem which is connected to the internet.

9.5 Checking the Current NetworkStatus – “netstat”
The Linux “netstat” program displays the current network status of the interfaces on the SnIP (or
any Linux computer). The program is called by simply typing “netstat” at either a console or
telnet/SSH session terminal. Selective display is possible by adding parameters after the netstat
on the invocation line. Typical base results for a SnIP without a bridge running for the more
complete “netstat -l” command might be as follows:

In this case you can see that both the eth0 and hdlc IP addresses have an http and https
component. Https represents the secure protocol.

9.5 Checking the Current Network “iptables” Status – “iptables”
The Linux “iptables” program is used to both control and display the current network filter status
of the interfaces on the SnIP (or any Linux computer). The program is called by simply typing
“iptables” followed by appropriate commands at either a console or telnet/SSH session terminal.
Selective display is possible by adding parameters after the iptables on the invocation line.
Typical base results for a SnIP using the List command, “iptables -L” or “iptables –list” might be
as follows:

[snip3:0 ~] route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.15.0 * 255.255.255.0 U 0 0 0 eth0
14.0.0.0 * 255.0.0.0 U 0 0 0 hdlc0
default 192.168.15.1 0.0.0.0 UG 0 0 0 eth0
[snip3:0 ~]

[snip3:0 ~] netstat -l
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.55.3:http *:* LISTEN
tcp 0 0 192.168.15.83:http *:* LISTEN
tcp 0 0 localhost:http *:* LISTEN
tcp 0 0 *:ftp *:* LISTEN
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 *:telnet *:* LISTEN
tcp 0 0 192.168.55.3:https *:* LISTEN
tcp 0 0 192.168.15.83:https *:* LISTEN
tcp 0 0 localhost:https *:* LISTEN
netstat: no support for `AF INET6 (tcp)' on this system.
udp 0 0 localhost:9473 *:*
netstat: no support for `AF INET6 (udp)' on this system.
netstat: no support for `AF INET6 (raw)' on this system.
Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node Path
[snip3:0 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-61

In this case only the Forward chain of the three default chains is populated.

9.7 Checking the Modem Status
You can use the m49ctl or m500ctl commands to check the modem. For example typing:

 m500ctl 0 us ?
See Section 6 on the use of the modem control programs to find out much more about the
modem.

9.8 Linux Basic Commands for Administration
Here is a list of commands to make you feel like a Linux “Guru”. They are common commands
used by many Linux users and administrators: No real detail is given here, and the commands
previously covered are only briefly listed if at all. A common technique to find out how to use a
command is to first type the command with an option of “—help” which will usually give some
usage information. Next go to the web and Google for “linux + command name” to get more
information than you may want.

Remember too that this is all running from less that ½ of a 16 MB flash emulating a hard disk and
a similar portion of 32 MB of RAM. It still does most of a full Linux system on a normally much
larger platform. A few items did have to be left out.

File Related Commands:
! ls [-l] – list files in a directory.

 example: ls –l /etc/config
! cp source destination – copy a file from source to destination location.

 example: cp –i mdm-find /tmp (note interactive option to avoid mistakes)
! mv – Move or rename a file.

 example: mv –i /tmp/mdm-find /tmp/find-modem (rename)
! rm – Removes or deletes a file

[snip8:1 ~] iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination
DROP all -- anywhere 10.9.13.0/24
DROP all -- anywhere 10.9.14.0/24
DROP all -- anywhere 10.9.15.0/24
DROP all -- anywhere 10.9.50.0/24
DROP all -- anywhere 10.9.51.0/24
DROP all -- anywhere 10.9.52.0/24
DROP all -- anywhere 10.9.53.0/24
DROP all -- anywhere 10.9.54.0/24
DROP all -- anywhere 10.9.61.0/24
DROP all -- anywhere 10.9.62.0/24
DROP all -- anywhere 10.9.63.0/24
DROP all -- anywhere 10.9.64.0/24
DROP all -- anywhere 10.9.65.0/24

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
[snip8:1 ~]

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-62

! which – finds a file in the current PATH. Some systems name this find or locate.
 example: which sethdlc

! touch – Set a file’s date and time or create an empty file.
! cat – Concatenate or send a files contents to a file or device. Usually displays a file’s

contents. It’s handy to pipe this to “less” for longer files.
 example: cat readme.txt or cat readme.txt | less

! grep [options] pattern [file...] – looks for the pattern in the file(s).
 example: grep root /proc/cmdline

! sed [options] pattern [file...] – stream editor for patterns in the file(s).
 example: sed root /proc/cmdline

! awk [options] pattern [file...] – complex file manipulation sometimes described as
 a combination of grep and sed.
 example: awk root /proc/cmdline

! df –h – Show disk (flash in this case) usage.
! free – Show RAM usage.
! wget – Get a file(s) from a web http or ftp location.
! chmod – change a files permissions.

 example: chmod 755 mdm-find
! chown – change a files owner.
! mkdir – Make a new directory.
! cd – Change to a new directory.

 example: cd /usr/sbin
! pwd – Display the present working directory.
! scp – Secure copy described in other sections of this guide.
! rsync – Remote sync of files – a sophisticated file copy.

Currently Running

! who – Displays the list of people currently logged onto this SnIP.
! ps – shows the current processes running with info about there resource usage.
! cat /proc/modules – shows the current kernel modules running.
! top – A formatted repeating “ps”. Quit using “q” or “ctrl c”.
! uptime – Time since last reboot with some load info.
! date – Display or change the current date and time.
! rdate – Get the date and time from a remote server.
! watch <command> - repeating run of command.

 example: watch ifconfig hdlc0
! time <command> Displays the time taken to run any command.

 example*: time nslookup datumsystems.com
! reboot – Shut down and then restart the SnIP.

Network Commands
! netstat [-r] [-l] – Alone or with one of these options gives different results.
! ifconfig – Interface status and configuration.
! route – Show or modify the kernel routing table.
! iproute – Show or modify the routing table.
! ip [address | link | route | tunnel] – Show or modify the routing tables.
! iptables – Show or modify the network filter chains.

 example: iptables --list
! ebtables – Show or modify the network bridge filter chains.

 example: ebtables --list
! brctl – Bridge control.

 example: brctl showmacs br0
! sethdlc – Allows changing the hdlc0 ports protocol.
! tc – Traffic Control. Linux kernel software for traffic shaping and prioritizing.

 example: tc show dev eth0

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-63

! nslookup <URL> - Look up an address.
 example*: nslookup yahoo.com

! ping – Ping a URL.
 example: ping 192.168.22.104
 example*: ping datumsystems.com

! traceroute – Trace the connection to a specific URL.
 example: traceroute 192.168.54.82

*Note: The commands with asterisks use named URLs and require Internet access and that the

“/etc/resolv.conf” file exist and contains valid IP Address(es) of Name Servers.

And there are a significant number of other commands available, like grep, gawk, awk, etc, etc.
To see a list of the main executable files use the “ls” command on the 4 directories in the default
path:

ls /bin
ls /sbin
ls /usr/bin
ls /usr/sbin

Other applications may also exist in the /usr/local/ or the /opt directories.

There are also the commands meant to be used with “pipes” represented by the “|” character.
For example typing “ls –l /etc” will result in more than can fit on the screen. You can use “ls –l
/etc | more” which waits for a keypress at each screenfull, or even better “ls –l /etc | less”, which
allows you to use the up and down arrow keys or page up and page down keys. Type “q” when
you are finished viewing either of these examples to return to the prompt. Yes this works over
telnet!

The web is an excellent training resource, and sites like “www.linux.org/lessons” have tutorials for
beginners and intermediates. The Linux Documentation Project at “http://tldp.org” is another of
the literally hundreds of resources available.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-64

10.0 SnIP Technical Information
The SnIP uses the Linux operating system, and has several built-in and module type drivers
added to it for the various interfaces and processes. There are also applications that add
capabilities. Below is a current listing of those items that are unique or compiled specifically for
the SnIP and where the software to access them resides. Note that most of the standard Linux
programs are also available with the exception of “X-windows” and GUI related or desktop items,
since the SnIP only has a command line interface.
Process/Application Compiled

as
Compiler/
Library

Location Program/Module
Name

Device
Name

Boot Loader Stand Alone gcc for
powerpc

mtd partition

Linux Kernel Kernel gcc for
powerpc

mtd partition vmlinuz

Root Filesystem Stand Alone BuildRoot
gcc using
uClibc

mtd partition snip875jffs2.img

Console port Kernel gcc Kernel ttyCPM0
Internal Modem
Control Port

Kernel gcc Kernel ttyU0

External Modem
Control Port

Kernel gcc Kernel ttyU1

Ethernet Port Kernel gcc Kernel eth0
Modem Data Port Module gcc /lib/modules snip_raw_hdlc eth1
Modem Data Port Module gcc /lib/modules snip_gen_hdlc hdlc0
HDLC port control Application gcc / uClibc /usr/bin sethdlc hdlc0

Modem Control Keep-
Alive Poll

Daemon gcc / uClibc /usr/bin mdm-polld --

Web Server Application gcc / uClibc appWeb
Web files /var/appWeb

/web
*.html, .cgi, .pl,.esp

Modem CLI Control Application gcc / uClibc /usr/bin m49ctl or m500ctl
Web Server Link to
Modem Control

Application gcc / uClibc

Quagga/Zebra Router
Suite

Application
daemons

gcc / uClibc /usr/sbin,
vtysh in
/usr/bin

zebra, vtysh, ripd,
ripngd, ospfd,
ospf6d, isisd

Iptables manage and
control

Application gcc / uClibc /usr/sbin iptables, iptables-
save, iptables-
restore

Multi-Cast routing
control

Application gcc / uClibc /usr/sbin mrouted, mrouted-
nc

SNMP Application gcc / uClibc /usr/sbin multiple

Notes:
The data port can have different names depending on the application that registers it with Linux
when the module is loaded. The dumb but efficient module that only is capable of Ethernet
encapsulation of data on the modem channel names the port “eth1”. The more sophisticated
module that uses Krzysztof Halasa’s generic HDLC routines names the port “hdlc0” and is
capable of encapsulating the data packets on the modem channel as either protocols Ethernet,
HDLC-Ethernet, Cisco, PPP, Raw. Most of these are not usable, but the real reason for creating a
special module with this access is for the Cisco embedded WAN protocol.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-65

The capability to run a bridge is built into the Linux Kernel. The bridging application is set up to
operate with all ports and traffic directions enabled. This configuration was created with a default
set of commands contained in a script similar to the one below:

! brctl addbr br0
! brctl addif br0 hdlc0
! brctl addif br0 eth0
! ifconfig eth0 0.0.0.0
! ifconfig hdlc0 0.0.0.0
! ifconfig br0 [eth0’s original ip address]
! ifconfig br0 up

In the above lines we used the bridge control program, brctl, to create a bridge called br0 and add
the two interfaces eth0 (Ethernet) and eth1 (satellite hdlc port) to this bridge. Then we made the
original port ip addresses 0 to eliminate them and set the bridge’s IP address to what the Ethernet
port’s address was originally. That last is necessary so that the web server, telnet and any other
access method to the SnIP are still viable. Note that we set up the normal Ethernet connection
eth0 after the hdlc port. We do that because the bridge takes on the ip address and MAC address
of the last interface added to the bridge.

The normal bridge script that runs if “BRIDGE=yes” is set in the configwiz program also takes the
given “Gateway” IP address from eth0 and assigns it to the new br0 interface, allowing programs
like rdate to properly set the date and time if set up.

10.1 The SnIP Bootloader
The bootloader used in the SnIP is part of the Denx Embedded Linux Development Kit or “ELDK”
and is named U-Boot for universal bootloader. U-Boot is a fairly sophisticated small operating
system. A significant amount of work went into customizing U-Boot to work with the SnIP875,
especially its unique HDLC and SPI-UART functions which are not supported by the native U-
Boot setup.

One main difference between U-Boot and Linux is that all devices in Linux are interrupt driven,
while they are mainly polled in U-Boot.

To work in the bootloader you connect a terminal (like Hyperterminal or gtkTerm) to the console
port at 38.4kbps,N,8,1 and power on the modem. Before the timeout for booting the kernel you
press a keys on the keyboard to halt the Linux boot process. In the current bootloader the keys
are “qt” because that does not interfere with some potentially connected applications

Once you are stopped in the bootlaoder there is information on line, and also just by typing “help”
at the U-Boot command line. The console command line in U-Boot is also somewhat similar to
that in Linux, except that it is strictly limited to a local console directly connected to the SnIP’s
serial port.

Note that U-Boot itself was originally loaded into the SnIP using a special “BDM” interface
(Freescale’s advanced JTAG type interface) tool used in development and manufacturing. The
location of U-Boot is protected so that it would be extremely difficult to damage it or make it
unusable.

10.1.1 Using the SnIP Bootloader to reload the Linux Images
U-Boot can be used to download and program both the Linux kernel and the Root Filesystem into
the SnIP. Both of those images must be available on a TFTP server on the same LAN as the
SnIP. The TFTP server will offer a specific directory for TFTP transfers, which is typically
“tftpboot” on a Linux server or perhaps TFTP-Root on Windows Whatever that directory is the file

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-66

“burna” must be in that directory and then another directory named “snip6” must exist containing
the SnIP’s kernel named “uImage”, and Root Filesystem named “jffs2.img”.

The SnIP requests files from the IP Server. Before you can download any files from the server, U-
Boot must be told what its own IP Address is and the server IP Address is with the commands:

 setenv ipaddress 192.168.1.82 /* Replace with your desired address */
 setenv serverip 192.168.1.104 /* Replace with your server’s address */

You can always see what the current environment variable are using the U-Boot command
“printenv”. You can also save these settings and changes with the command “saveenv”. It is a
good idea to make certain that you have Ethernet connectivity by using the U-Boot ping
command as in “ping 192.168.1.104”, or whatever the server address is.

Then the following two commands can be used to download a simple script named “burna” from
the server. This auto script will then download the kernel and root filesystem images. The
commands are: (just type the first part, not that within the comment tags /* */

 tftp 100000 burna /* download the script - note 5 zeros after the 1 */
 autoscr /* This executes the script just loaded */

The auto script is verbose and will display its process as it runs. The kernel download and burn to
flash takes only a few minutes, but the Root Filesystem is approximately 6 Mbytes and will take
about 5 minutes. Be patient, and the script will display each of 7 steps that it goes through. After
the 7th step is completed a final display will be:

 => done
when the process has completed. Then you type the U-Boot command “reset” to restart the
entire boot process from scratch, this time allowing the new Linux image to boot.

The first time Linux boots up several processes can take a variable amount of time. An initial
“Configure Shared Libraries” can take about 30 seconds. Specifically the “Creating DSS (and
RSA) Key for SSH…” can take from 10 seconds to 3 minutes to complete.

One main reason for covering this much on the bootloader is that it is currently the main method
for downloading the Linux image and the root filesystem.

10.2 The Linux Boot Process
The Linux boot process is somewhat unique among different distributions of Linux. In this one the
basic process is as follows.

On initial power up or a reboot command within Linux, the first item to be loaded is the bootloader
(currently U-Boot). The bootloader waits approximately 5 seconds for a keypress which would
halt further loading. If no keypress it found it starts to decompress and load the Linux kernel
image from flash memory into the dynamic RAM.

The Linux kernel then loads and installs all of its drivers that are built into the kernel itself. If a
terminal is connected to the console port during this process the bootloader and Linux startup
messages can be viewed.

Once the Linux kernel is running it must decompress and install the root filesystem, which is the
same as the disk drive in a full PC type computer.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-67

Linux then goes to the “inittab” file located in the “/etc” directory of the root filesystem. This file
contains a list of startup and shutdown routines or daemons to call. The shutdown is generally in
the reverse order of the startup.

After mounting the filesystem image, the inittab then goes to the “/etc/init.d/initconfig” file which
checks to see if the file “/etc/config/system” exists. If it does it exits with a success return. If not it
calls the “configwiz” shell script to set up the /etc/config/system” file. This file contains some basic
information like the Host name of the SnIP, its IP address and netmask, and whether it is to be
used as a bridge or a router. This information is used by later scripts and daemons in the inittab
sequence.

Next, the /etc/init.d/sysconfig” shell script runs. It first loads the “etc/config/system” file which
contains the defaults for several parameters. It then accomplishes the following:

A. Builds Library dependencies.
B. Builds Library cache
C. Sets kernel variables – calls /etc/config/sysctl.conf
D. Sets Hostname

The etc/init.d/network” shell script then starts up the network and does several things including

A. Sets the eth0 IP address.
B. If the HDLC port has a non-null IP address then it loads the module driver to implement

the “hdlc0” interface and sets its IP address.
C. Checks for the file “etc/config/static-routes” and if found executes the “route add”

command on the applicable lines (any line not beginning with “!” or “#”. This may include
setting the default gateway and fixed routes. Note that when implemented the
Quagga/Zebra router sets up dynamic routes.

D. Checks for the Zebra/Quagga configuration files and sets up the dynamic routing
parameters according to the configurations contained in those files.

One of the last items run from the inittab list is the modem polling daemon. It is only run if the
configwiz setup resulted in the line “MDMPOLL=yes”. This is a background daemon that checks
to see if the SnIP card is currently selected as the main data interface. If it is then periodic polling
messages are sent to the modem from the SnIP via the internal control channel as a keep alive.
Without this keep-alive the modem will report that the SnIP has failed.

11.0 SnIP Known Bugs and Issues

11.1 Bugs
The SnIP uses mainly standard Linux drivers and functions in its operating system. Sometimes
those drivers and functions may have unresolved problems themselves. We try to identify and
notify users of those problems in advance as well as attempting to fix them. Of course the SnIP
has several unique programs that may have bugs or issues too.

11.1.1 Eth0 does not properly notify bridge of status on re-connect
The bridge (not router) mode exhibits an odd behaviour if the Ethernet cable is removed
and re-inserted. Both the ifconfig and bridge seems to be aware that the connection has
been restored, but the bridge is no longer functioning correctly.

Fileystem versions prior to 0.5.34 (June 2008) have no automatic correction of this
condition. To restore proper operation Linux must be given the command “ifconfig eth0
up” even though it claims that it is already “up”. The command can be issued remotely,
so even if this occurred on a remote unmanned site, proper operation could be restored.

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-68

By connecting a switch or hub to the SnIP’s Ethernet connection, other devices on the
other side of the switch can be removed and installed without this happening.

11.1.2 IP Address Sync between Modem and SnIP not reliable
The proper operation would seem to be that the Modem displays the IP address and
mask that are set in the persistent configuration of the SnIP. And if the IP Address is
changed on the Modem’s front panel then it would change in the SnIP’s current and
persistent configuration. It does not yet work that way, and something is wrong with the
procedures. They are under review now.

11.2 Not Finished Yet
This may be a permanent category because there is so much possible that could be added to the
SnIP, both in software and hardware.

11.2.1 Web Server
The web server itself is a production item, but the web pages that it serves are in very
preliminary stage. Look for big improvements in this area soon.

11.2.2 Dynamic Router Suite - Quagga
Quagga appears to be compiled and running, but no time has yet been devoted to setting
it up and testing. This is one of those “knowledge intensive” areas.

11.2.3 Software Update Programs
The SnIP could really use a Windows or Browser based software update facility. Right
now updates are done by copying new programs directly into the SnIP, which is a normal
method for Linux gurus, but the rest of us want an easier and less error prone method.

11.2.4 External USB Connection
Almost no work has been done on this yet. It should work but needs drivers.

11.2.5 Internal Compact Flash Socket
Very little has been done with this socket yet. Its intent is to allow third parties to develop
proprietary software that can be run from the SnIP’s hardware and software base. For
example Network Management Systems are a natural candidate.

This socket could also be used to hold a larger development system allowing more
sophisticated programs that do not fit in the large but limited space of the base SnIP. For
example, the gcc compiler, PHP, SNMP, databases, etc.

12.0 Resources

The SnIP uses the Linux operating system. If you are working on a Linux PC communicating with
the SnIP then most if not all of the software required is already available. This first section
describes how to set up a new easy to use Linux development environment for the SnIP. If you
are working on a Windows PC then many programs are not commonly provided as part of the
setup. Go to section 12.2 which shows some open source software that is available to run on a
Windows computer to aid in working with the SnIP.

 M5/500 Satellite Modem SnIP Quick Start Guide

Rev 0.28 Page SnIP QSG-69

12.1 Linux Programming Resources

Since the SnIP is running Linux it makes sense to do development of the kernel, drivers,
daemons and applications on a PC already running Linux. Most of the initial developmen twork on
the SnIP was done on a PC running Linux from the Fedora Core 4 and 5 distributions, which are
free to download.

Virtually all of the kernel and drivers were developed using a semi-packaged set of cross-
compilers available from www.denx.de and called the ELDK, short for Embedded Linux
Development Kit. The majority of that was done on ELDK versions 3 and 4.0 which had no
provisions for developing a compact Root Filesystem. The Root Filesystem was built using the
smaller “uClibc” libraries instead of the common “glibc”, and developed on a an old MAC with a
PowerPC processor providing a native compiler environment, Later work was done on an
implementation of a cross compiler on a PC created using the BuildRoot development system
which is tightly coupled with BusyBox. This last is extremely difficult to reproduce.

Luckily the latest version of the ELDK, version 4.1 is now available at of 2007 with a version
containing a built-in pre-created PowerPC C and C++ cross-compiler using the desired uClibc
libraries. Important – this is version 0.9.27 of uClibc. That is what the SnIP has and all uClibc
programs must use the same version. Programs cross-compiled against another version of uClibc
will not run properly.

If you want to do fairly straightforward programming on the SnIP, remember that it already
contains the powerful Bash scripting language and the miniPerl version of Perl, so it is already
highly programmable using just the SnIP itself. For some applications however you would
normally use either C or C++. If you understood any of the previous and want to develop C or
C++ applications for the SnIP, the following procedure can be used to create the proper
environment on a standard PC running one of the supported distributions of Linux. You will need
about 1 Gbyte of free space for the ELDK environment. We cannot tell you how to develop or
program!

First, go to the denx site at and download the iso image of the ELDK for Freescale processors
and uClibc. From the denx or mirror ftp site you would first select the directory for “ppc-linux-x86-
uclibc” and from that page select the “iso” directory. Then from the listed iso images select the
one named “ppc-2007-01-21-uclibc_freescale.iso”. Currently this page is at
ftp://ftp.denx.de/pub/eldk/4.1/ppc-linux-x86-uclibc/iso/ although that may change or be different at
one of the mirror sites. When you have downloaded this file it must be burned to a CD which is
then used to install the software. We only want to install the minimum required for SnIP
development which is only the ppc_8xx processor version. After creating a new directory folder at
“/opt/eldk41u”, I used the install command as follows:

$ /media/cdrecorder1/install –d /opt/eldk41u ppc_8xx

This command says to run the install program on the CD putting only the files for the ppc_8xx
processor into the directory /opt/eldk41u created above. There is nothing magic about the name
or location but it is where denx suggests and I add the version info of 41u so I know which one it
is. This is about 800k+, but if you install additional processor families it will go up.

The html file on the CD has the necessary information needed to set the $PATH and
$CROSS_COMPILE environment to identify the proper cross compiler. You should read all of the
information provided with the ELDK.

Programs to be compiled could be kept either in your home directory or somewhere accessible in
the /opt/eldk41u directory or anywhere else you choose with the proper permissions. You should
be able to install and run the cross compiler without root or superuser priveledges.

Programs you create can easily be loaded into the SnIP for testing using the “scp” methods
shown earlier.

http://www.denx.de/
ftp://ftp.denx.de/pub/eldk/4.1/ppc-linux-x86-uclibc/iso/

 M5/500 Satellite Modem SnIP Quick Start Guide

 Rev 0.28 Page SnIP QSG-70

12.1.1 SnIP Kernel Development
We do not recommend this, however if you have an idea for modifications to the kernel and its
resources then contact us. There are also about 20 files required to modify the kernel compiler to
recognize and use the SnIP. We use the ELDK from www.denx.de for development.

12.2 PC Program Sources
The SnIP uses the Linux operating system. If you are working on a Linux PC communicating with
the SnIP then most if not all of the software required is already available. But if you are working
on a Windows PC then many programs are not commonly provided as part of the setup. This
section describes some open source software that is available to run on a standard computer to
aid in working with the SnIP. These are all currently free.

One Linux program that would probably have to be installed is “gtkTerm” which is a simple serial
terminal emulation program. In Linux Ubuntu you may have to kill the brltty process and in Fedora
you may need to add yourself to the uucp group to get gtkTerm to attach to serial ports.

12.2.1 Windows Programs for the SnIP’s Linux world
Communicating with the SnIP from a Linux computer is fairly easy for users familiar with the Linux
environment. Oddly though there are some programs available for Windows that are easier to use
than equivalent tools in Linux. Some of those tools are listed below – and they are all free.

=> Windows SSH/Telnet Client – PuTTY.

What: Small and very capable implementation of Telnet and SSH for Windows.
Where: http://www.chiark.greenend.org.uk/~sgtatham/putty/

=> Windows Graphical Secure Copy and SSH Suite – WinSCP I wish this was available for

Linux. The latest versions seem to also support FTP.
What: Looks almost like a graphical FTP application for scp. Very Nice!
Where: http://winscp.net/eng/index.php

=> Windows Terminal Emulator – Hyperterminal – Built in but sometimes exhibits strange

behaviour on some computers!

=> Windows TFTP Server – PumpKIN by Klever Group

What: very small and capable graphical TFTP server for Windows.
Where: http://kin.klever.net/pumpkin/

=> Windows TFTP Server – tftpd32 by Phillipe Jourdin

What: very small and capable graphical TFTP server for Windows.
Where: http://tftpd32.jounin.net/

=> Windows RSYNC Client/Daemon – “rsync” is a mainstay of Linux. In Windows almost

everything seems to involve running Cygwin to achieve rsync capability. You might be better
served using Winscp until something respectable is available. Suggestions welcome.

What:.
Where:

=> Windows Programming and General Purpose Editor – “Notepad++” is a very simple, small,

fast but powerful editor for Windows that is a replacement for the standard Notepad. It is
small but has some wonderful features unmatched by most big editors.

What:. Programming and general purpose editor. Very Nice!
Where: http://notepad-plus.sourceforge.net/uk/about.php

http://www.denx.de/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.net/eng/index.php
http://kin.klever.net/pumpkin/
http://tftpd32.jounin.net/
http://notepad-plus.sourceforge.net/uk/about.php

	SnIP Quick Start Guide
	M5/500 Ethernet Option Interface
	
	1.0Optional SnIP Ethernet Interface Overview
	1.0.1Common Setup To Configure the SnIP
	1.0.2How To Configure the SnIP as a Bridge Device
	1.0.3How To Configure the SnIP as a Router Device
	1.0.4How To Configure the SnIP as a Monitor/Control Device Only
	1.0.5How To Set Persistent Configuration Options
	1.0.6Basic Linux and SnIP Operating Commands
	1.0.7How To Create a Telnet Session with the SnIP
	1.0.8How To Log into a Quagga Session
	1.0.9How To Create New User Accounts
	1.1More Overview Information on the SnIP
	1.1.1Interfaces
	1.1.2Compatibility
	1.1.2.1Protocol Compatibility
	1.2Overview – Initial Setup
	1.2.1Overview – First Time Startup and the Config
	1.2.2Overview - Modes of Operation

	2.0 SnIP875 Ethernet Interface Setup and Operation
	2.0.1Multi-Purpose 9 Pin "D-Sub” Female Connecto
	RS-232 Terminal 9 Pin "D-Sub” Female Connector
	RS-232 DB9 Female Terminal�Connector Pin Assignment
	RS-485 DB-9 Female �Connector Pin Assignment

	2.0.2Console and RS-485 Connections

	2.1Console/Terminal Mode
	2.2Telnet Terminal Mode
	2.3Open SSH Terminal Mode
	Initial Configuration
	2.4Setting The Unit IP Address
	2.4.1Setting IP Address and Mask from Front Panel

	3.0Basic Operation Setup
	
	3.0.1Linux Startup Note

	3.1Basic Network Topologies
	3.1.1Point-to-Point Links
	3.1.1.1Bridging
	3.1.1.2Routing
	
	Remote Site Route Table

	3.1.1.2.1Adding an Internet Connection
	Remote End
	Main Station End

	3.1.1.2.2Static Routing Between a SnIP and Cisco Type Router

	3.1.2Point-to-Multi-Point Links

	3.2Bridge Setup
	3.3Router Setup
	3.3.1Setting Static Routes
	3.3.2Setting Dynamic Routes
	3.3.3Setting Up Multi-Cast Routes
	3.3.4Setting Up Filtering or NAT using ‘iptables’
	3.3.5Setting Up Bridge Filtering or NAT using ‘eb
	4.0 SnIP Software: U-Boot and Linux Operations
	4.1Basic Linux Directory Structure
	4.2Secure Copy Procedure \(scp\) –
	
	A. From a Host Computer to copy to a SnIP:
	A1. SCP from a Windows Computer using PuTTY – psc
	B. From a SnIP Terminal to copy from a Host Computer:

	4.3File Transfer Protocol (FTP) (Using wget instead)
	4.4Trivial File Transfer Protocol – \(tftp\)
	4.5Telnet
	4.6Local Console Control
	4.7Disaster Recovery

	5.0New Software Load or Upgrade
	
	
	5.1Updating the Linux Kernel
	5.2Updating the Bootloader
	5.3Updating Individual Files and Applications
	5.3.1Using SCP between a Linux Computer and the SnIP
	5.3.2Using Win SCP between a Windows Computer and the SnIP
	5.3.2.1Updating and Synchronizing an Entire Directory
	5.3.3Using RSYNC between a Linux Computers and SnIPs
	5.3.4Using “ipkg” to install and update packages

	6.0 SnIP Monitor and Control Applications
	6.1m49ctl and m500ctl Applications
	m500ctl 1 mif ?
	m500ctl –v 1 mif ?
	Modulator IF Freq = 75.125000 MHz
	6.1.1Special Outputs – Raw Status and Status Elem
	6.1.1.1Raw and Verbose Outputs
	6.1.1.2Status Outputs

	Unit Status Raw Output Events - Integer Scalar Value 0
	Modulator Status Raw Output Events - Integer Scalar Value 0
	Demodulator Status Raw Output Events - Integer Scalar Value 0
	Interface Status Raw Output Events – Integer Scal
	Unit Status Raw Output Alarms - Integer Scalar Value 1
	Modulator Status Raw Output Alarms - Integer Scalar Value 1
	Demodulator Status Raw Output Alarms - Integer Scalar Value 1
	Interface Status Raw Output Alarms – Integer Scal
	Unit Status Raw Output Tests - Integer Scalar Value 2
	Modulator Status Raw Output Tests - Integer Scalar Value 2
	Demodulator Status Raw Output Tests - Integer Scalar Value 2
	Interface Status Raw Output Tests – Integer Scala
	6.1.2A Unique m49ctl and m500ctl Case - Redundancy
	6.1.2.1Redundancy Control via “m49/m500ctl”
	6.1.3m49ctl and m500ctl Command Set
	6.1.4Other Control Manipulation
	6.2Web Server Monitor and Control

	7.0 The Web Server
	7.1Basic Web Operations

	8.0 FAQ and HowTo Collection
	8.1FAQ - Frequently Asked Questions

	Do I have to do anything special when starting or stopping the SnIP?
	What is the difference between bridging and routing?
	What is the difference between static and dynamic routing?
	How long does the SnIP take to boot up?
	Why do I get a message on the console that says N
	Why do I get an error message on the console duri
	Why do I get a message on the console that “Unabl
	Ifconfig shows no IP Address for either eth0 or hdlc0
	After saving new ‘configwiz’ settings the console
	When I ping a URL I get no or a bad response
	Does the SnIP implement RIP or RIP2 routing protocol?
	Does the SnIP have the PHP language installed?
	Can I compile my own “C” programs to run on the S
	Does the SnIP’s rear panel USB connector do anyth
	Can I modify or create my own web site to be hosted by the SnIP?
	8.2HowTo – Common Tasks
	8.2.1How To Use the “nano” Editor
	8.2.2How To Set the SnIP for your Time Zone
	TZ=std, offset, dst

	8.2.3How To Automatically Set the Date & Time wit
	8.2.4How To Set Up Quagga to Run on the SnIP
	8.2.5How To Create New User Accounts on the SnIP
	8.2.6How To Specify a Domain Name Server (DNS)
	8.2.7How To Do Almost Anything in Linux
	8.2.8How To Recover the Default Configuration of a SnIP (Disaster?)

	9.0 SnIP – Basic Commands for Status and Administ
	9.1Checking the Current SnIP Configuration
	9.2Checking the Ethernet Connection – “mii-diag”
	9.3Checking the Interface Configuration – “ifconf
	9.4Checking the Current Route Status – “route” an
	9.5Checking the Current NetworkStatus – “netstat”
	9.5Checking the Current Network “iptables” Status
	9.7Checking the Modem Status
	9.8Linux Basic Commands for Administration
	File Related Commands:
	Currently Running
	Network Commands

	10.0 SnIP Technical Information
	10.1The SnIP Bootloader
	10.1.1Using the SnIP Bootloader to reload the Linux Images

	10.2The Linux Boot Process

	11.0 SnIP Known Bugs and Issues
	11.1Bugs
	11.1.1Eth0 does not properly notify bridge of status on re-connect
	11.1.2IP Address Sync between Modem and SnIP not reliable

	11.2Not Finished Yet
	11.2.1Web Server
	11.2.2Dynamic Router Suite - Quagga
	11.2.3Software Update Programs
	11.2.4External USB Connection
	11.2.5Internal Compact Flash Socket

	12.0 Resources
	12.1 Linux Programming Resources
	12.1.1SnIP Kernel Development

	12.2 PC Program Sources
	12.2.1Windows Programs for the SnIP’s Linux world

